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ABSTRACT

iLL

Reflector _zntcnna design is a mature field and most aspec_ have be.ca studied.

However, of that most previous w'ork is distinguished by the fact tl_at it is narrow in scope,

analyzing only a particular problem under certain conditions. Methods of analysis of this

type arc not useful for working on rcal-li/'e problems since they can not handlc the many

and various types of perturbations of basic antenna design. In tiffs thesis, the idea of an

integrated design and analysis isproposed. By broadenir_g the scope of the malysis, it

becomcs possible to deal with the intricacies attendant with modern reflector antenna design

problems.

In tiffs thesis, thc conccpt of integrated reflector antenna design is put forward. A

number of electromagnetic problems related to re.f'lector antcrma design are inv_tigated.

Some of thesc show how tools for rcflcctor anterma de.sign arc created. In particular, a

mcthod for estimating spillover loss for open-ended waveguidc feeds is examined. The

problem of calculating and optimizing beam efficiency (an important figure of merit in

radiometry applications) is also solved. Other chapters in this thesis de.al with appllcatiens

of tiffs _;cncral analys_. The widc-an_le scan abilities of reflector antennas is examined and

a design is proposed for the ATDRSS trib_d reflector antenna. The.foLlowing chapter

discusses the deve2opment of a general phased-array pattern computation program and

shows how the concept of integrated design can bc extended to other types of antennas.

The conclusions are contained in the final chapter.



iv

ACKNOWLEDGEMENTS

Thanks go to R. Acosta,.G. Fujikawa, R. Q. Ice, and R. Sharp of the NASA

Lewis Research Center, Cleveland, Ohio. This work was supported under NASA 3-419

and NASA NCC3-156 for tileperiod from June,1988 to August, 1991.



TABLEOFCONTENTS

.

2.

.

Page

INTRODUCTION ............................ I

RELECTOR SPILLOVER LOSS OF AN OPEN-ENDED RECTANGULAR
AND CIRCULAR WAVEGUIDE FEED ................. 3

REFLECTOR ANTENNA ANALYSIS .................. 14

.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

14
Description of Problem ......................
The Reflector Surface ........................ 15

153.2.1. Parabolic reflector .....................
........... 163.2.2. Spherical reflector ..........

3.2.3. Hyperbolic reflector .................... 16
3.2.4. Conic section ....................... 16
3.2.5. Boundary ......................... 16
The Source ............................ 17

173.3.1. Feed source ........................
3.3.2. Power radiated ....................... 20

203.3.3. Incident field on reflector ..................
21Geometrical Optics Field ......................
213.4.1. Reflection point ......................

3.4.2. Formula for reflected field .................
3.4.3. Curvatures of reflected wavefront .............

The Edge-Diffracted Field

22
23

...................... 26
263.5.1. Diffraction points .....................

3.5.2. Formula for diffracted field ................. 27
273.5.3. Divergence factor .....................

3.5.4. Diffraction coefficients ................... 28

3.5.5. Spherical components of incident field ........... 30
3.5.6. Rectangular components of diffracted field ......... 30

31
3.5.7. Detour parameter .....................
3.5.8. Uniform asymptotic theory ................ 31
Secondary Pattern Computation .................. 32
3.6.1. Fast Fourier transform .................. 33

3.6.2. Polarization of secondary pattern .............. 33
3.6.3. Directivity ......................... 34

Concluding Remarks ........................ 35

WIDE-ANGLE SCANNING FOR REFLECTOR ANTENNAS ....... 43

4.1.

4.2.

Single Reflector Antennas .....................
4.1.1. PI: symmetric parabolic reflector with f/D=-2 .........
4.1.2. F2: symmetric parabolic reflector with f/D=l .........
4.1.3. P3: offset parabolic reflector .................
Dual Reflector Antennas ......................

4.2.1. CI: cassegrainian reflector with tilted main reflector ......
4.2.2. C2: cassegralnian reflector with tilted subreflector .......
4.2.3.

44
44
46
49
50
50
51

C3: cassegrainian reflector with both reflectors tilted ...... 51



.

.

.

4.3. Conclusions ............................ 52

COMPUTATION AND OPTIMIZATION OF BEAM EFFICIENCY ..... 67

5.1.

5.2.

5.3.
5.4.

5.5.

Three I_finitions.......................... 67

The Problem with Direr Computation ................ 69

IndirectComputation of Bcarn Efficiency .............. 71

Opimizationof Bcam EfficiencyforClusterFea,ds .......... 73
5.4.I. Use of clusterfet,zls..................... 73

5.4.2. Matrix formulation ..................... 74

5.4.3.Optimizationof beam efficiency............... 75
Resultsand Discussion ....................... 77

5.5.I. Power as a functionof sidclobes.............. 77

5.5.2. Efficiencyofreflectorantennas ............... 77

5.5.3. Dependence of be,am efficiencyon feedsize ......... 77
5.5.4. Scann_ be,am ....................... 78

5.5.5. Clusterfeed ........................ 79

USE OF FREQUENCY SELECTIVE SURFACES IN REFLECTOR
ANTENNA DESIGN .......................... 99

6.1.

6.2.

6.3.

6.4.

99The ATDRSS Project .......................
I_sign .............................. 100
6.2.1. FSS design ........................ 101
6.2.2. Of-fset reflector ...................... 102

6.2.3. Symmetric reflector .................... 103
6.2.4. Comparison of reflector size ................ 103
Results .............................. 104

Physical Layout .......................... 107

CONCLUSIONS ............................ 119

REFERENCES ................ ............. 120

APPENDIX ................................................... 123

vi



1. INTRODUCTION

The subject of this thesis is based on the analysis and design of reflector antennas

using an integrated approach. The concept is to obtain a method of analysis that can be

applied to a wide variety of problems, rather than one that is narrow in scope and may be

applied to only a few specific problem types. Reflector antenna design is a mature field.

Reflector antennas have been in common use since World War II. They are still popular

today due to their simplicity, ease of construction, low cost, and light weight. Most

aspects of reflector antenna design have been studied in the past. Figures of merit such as

directivity, beam efficiency, and sidelobe level have been looked at closely. The effect of

feeds, compensation for reflector distortion, shaping of the reflector dish, etc. have also

been studied. What most of these earlier studies lacked, however, was a broad scope. A

particular aspect of reflector antenna design was studied. A method of analysis was

derived and results were obtained. Then another problem would be tackled, with its own

solution. However the method of analysis could rarely be used for anything other than

generating research papers on that particular topic.

The intention of this thesis is to make the jump from methods of analysis that

generate research papers to methods of analysis that can be used to tackle a broad range of

real life design problems. This means that the anaysis must be able to handle a broad range

of reflector antenna intricacies. The method of analysis must be very general in nature and

yet be simple enough so that it may be used by someone other than the originator of the

method of analysis.

In each chapter a separate topic of reflector antennas is discussed. The chapters are

related by the fact that they represent some of the problems encountered with reflector

design. The second chapter discusses an important parameter for reflector antenna design,

the spillover loss. In the third chapter, the aperture integration method, which is used in

our reflector antenna analyses, is explained in detail. The fifth chapter examines the

analysis of beam efficiency, the most important figure of merit for antennas used in



radiometry applications. The fourth and sixth chapters look at problems posed for reflector

antennas. In the fourth chapter, a study is undertaken to find the limits to which a reflector

antenna system might be used for scanning. In the sixth chapter the challenge of

constructing a triband reflector antenna is examined. In this chaplet, in particular, all the

capabilities of the method of analysis must be brought to bear on the problem, since there

are many conslraints upon the design. It is this type of reflector antenna problem,

involving a space-borne antenna, that will be the focus of much of the future research in

reflector antennas. Conclusions are presented in the final chapter.



2. REFLECTOR SPILLOVER LOSS OF AN OPEN-ENDED RECTANGULAR AND
CIRCULAR WAVEGUIDE FEED

Open-ended rectangular and circular wavegides are a most commonly used feed for

reflector antennas 1. Their radiation pattern was first calculated by Chu in 1940 by using a

form of Kirchhoffs approximation [1,2]. Important pattern characteristics such as 3 dB

beamwidth, zeros, and sidelobes are well documented in the literature [3,4]. In reflector

applications, there is another important parameter, namely, the spillover loss, which is

defined as the fraction of power received by the symmelrical reflector within the half-cone

angle 0 (Figure 2.1). (All figures will appear at the end of their respective chapters.) In

this note, we shall present a set of curves giving spillover loss for several practical cases.

For one feed case, we will also present a simple analytic expression which gives a good

approximation to the spillover loss and is obtained by curve fitting.

In spillover or directivity calculations, one must first determine the power radiated

by the feed from the Poynting integral over a closed surface S, i.e.,

p =IIsfE×H,).ds (2.1)

If (E,ED were known exactly, the result of P would be unique no matter which surface S is

used. In the Chu-Kirchhoff formulation [2, Eq. 11], the aperture field at the waveguide

opening $1 is approximated by the incident mode (e.g., TEll). The higher-order modes

and reflected field are ignored. This is justified in the literature for circular waveguides

with a>l _, [2] and for rectangular wavegnides [5]. Because of this approximation, the two

power computations

PI ffiP calculated from (2.1) by using surface SI, and

P. = P calculated from (2.1) by using the infinite radiation surface S.

are generally different. In fact

1 Some of these results have been published in IEEE Transactions on Antennas and Propagation, June,
1990 [24].



Pl > P- (2.2)

because P1 contains both P. and the reflected power. In the limit a/% -* ,-, Pl reduces to

P.. as expected. In Figure 2.2, we plot P../Pl as a function of a/_ for different waveguide

feeds. In spillover calculations, we use P. instead of Pl as the input power so that the

spillover loss goes to zero as 0 --) g.3

It should be noted that for field patterns the theoretical and exper_ental results

diverge as the size of the aperture decreases. Agreement is good for waveguides as large as

those for which results are shown in Figures 2.3 to 2.7 [2], [5]. However, the results

should not be extended to cover waveguides smaller than those for which results are

shown.

SpilloverresultsarepresentedinFigures2.3to2.7 inthefollowingmanner.
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Fig.

2.3

2.4

2.5

2.6

2.7

Table 2.1. Modes used in wave_uides

wave.de

circular

circular

2:Irectangular

square

4 square

mode

TEll

TE21

surfl

sum

differer_e

As an example, consider a circular waveguide for a monopulse feed, using the TEll mode

and TE21 mode for sum and difference patterns. Let the reflector be of the symmetric

parabolic type with f/D=0.4. The exlended half-cone angle of the reflector is 64 °. In order

3 Reflector direcfivity calculations were sometimes carded out by using PI (not P.) as the feed input

power. Strictly speaking this practice underestimates the direcfivity of the reflector antenna. For example,

for a circular guide feed with affi0.7 _. and excited by TE21, P,,JP1 read from Fig. 1 is 0.91, corresponding

to a directivity underestimate of 0.4 dB.



to keep the spillover loss less than I dB, the diameter of the circular guide should be at least

0.90 _ This size waveguide feed would have less than 1 dB spillover loss for both the

TEl1 and TE2t modes.

For the case of a circular waveguide excited by the TEll mode, an analytic

expression has been derived by curve fitting. This expression is fairly accurate over the

range where 20 ° < 0 < 70 ° and spillover loss is less than 4 dB. It reads

spillover loss (in dB) = -a0"-_

where logloa = 3.78(a/X) -'0.629

[_ = 2.50(a/_.)-0.324.

(2.3)

Here 0 is the haft-cone angle in degrees and a is the parameter def'ming the feed size. A

comparison of the results obtained from the computer code and fi'om the formula in (2.3) is

shown in Figure 2.8 for several sizes of waveguides.



6

Open-end
surface S1 /

Figure 2.1. The total input power radiated fxom the feed may be detem_ed by an
integration over surface S. or over surface S1.



v-

m.

!

1.00

0.96

0.92

0.88

0.84

TE2 i

6
Circular Waveguide Feed

0.80
0 1 2 3

1.00

0.96

0.84

0.80
0

..f.... ":"l

/ /Rectangular Waveguide

Feeds "--

1
1 2

Figure 2.2. Relationship btween the power at infinity P. and the power radiated through
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Figure 2.8. Comparison of spillover calculated by numerical integration and that by the
simple formula in (2.3) for the circular waveguide excited by the TEl1 mode.



3. REFLECTOR ANTENNA ANALYSIS

In this chapter the method of solution for reflector antenna problems will be

discussed. After describing the problem and the various elements involved, the individual

elements will be discussed one-by-one. This derivation is not original, having appeared in

other sources [6], but it is useful for understanding the methods used in in our reflector

antenna calculations.

14

3.1. Description of Problem

The geometry of the problem under consideration is shown in Figure 3.1. A

reflector S is illuminated by the incident field from an array feed. The method of solution

used is Aperture Integration (AI), which provides the same degree of accuracy as Physical

Optics (PO) and avoids the caustics (infinite field in the mare beam direction) that occur in

the Geometric Theory of Diffraction (GTD). In PO, the induced surface currents on the

reflector S are approximated by

J, = 2n × H i (3.1)

These currents are then integrated to find the far field ES(r). In AI the reflected-field and

diffracted-field contributions at a point P2 on the planar aperture surface S, are computed.

This is done for points forming a grid over the aperture surface. A Fast Fourier Transform

(FFT) is then used to obtain the far-field E'(r) [6-9]. AI has several advantages over PO.

First of all, the use of an FFT (allowed by integration over the planar surface S,) is

numerically efficient. The present formulation also allows for the use of multiple

reflectors. In addition, AI can be used to obtain near-field information. Many of today's

experimental measurements for reflector antennas are conducted in near-field ranges so this

method can be used as an analytical check. Other advantages of the formulation of AI

presented here are

(i) The surface of the reflector may be arbiu'ary.



(ii)The edge ofthereflectorcan be an arbitrarycurvelyingon an ellipticalcone or

cylinder.

('di) The divergence factor of the _u-ic Optics (GO) field is correctly

computed. This allows the feed to be placed away fi'om the reflector dish

where tim divergence facm_ is not unity.

(iv) The extg_ diffzacl_! field is included hc_. Two uniform thcoriea are used to

keep the aperture field continuous from the lit to the shadow region.

In Sections 3.2 to 3.6 the elements of the reflector problem will be examined. In

the next section the source will be studied. This leads to the incident field I-Ii on the

reflector. In Section 3.3 the method of describing the reflector(s) is put forth. This is

necessary for obtaining the field at some point on the aperture surface. Finally an FFT is

used to obtain the far field.

15

3.2. The Reflector Surface

The reflector surface is described by an analytical equation. This equation may take

a variety of forms, depending on whether the surface is a type of conic or not. In general,

the surface is described by the equation

z = do + dtx + d2y + d3xy + d4x 2 + dsY 2 + d2[P(x,Y)] d_ (3.2a)
P

P(x,y) = s 1 + s2x + s3y + s4xy + _x 2 + s6Y2 + sTx2y + ssxy 2 + sox3 + sloY 3 +

SllX2y 2 + st2x3y + Sl3XY3 + Sl4X4 + slsY 4

Some examples follow.

3.2.1. Parabolic reflector

In this case the reflector equation is given by

X2+ y2

z=C.÷ 4fL

(3.2b)

(3.3)



where Ca is a constant and fL is the focal length of the parabola.

3.2.2. Spherical reflector

A spherical reflector may be described by

z - C b - 4 R2 - x 2 - y2

where Cb is a constant and R is the radius of the sphere.

3.2.3. Hyperbolic reflector

This shape is commonly used for subreflectors. The reflector equation is

(3.4)

z= wo+ wl (3.5)

3.2.4.Conic section

For a reflectorcutfrom a conicsection,thereflectorsurfaceisgiven by

(z ef 2x2--_=j+l_e, _ +y2 f2
1 - • 2 (1 - e) 2 (3.6)

where • is the eccenn'icity and f is the focal length.

3.2.5. Boundary

Two types of boundaries are frequently used and receive special attention. In the

firstcase,the boundary r istheintersectionof surfaceS and an ellipticalcylinder(Fig.

3.2a). The paran_ters of the cylinder are

(xo Yc)= centeroftheellipse

(KI,K2) = semiaxisalong (x,y)direction.

In the second case,the boundary r isthe intersectionof S and and ellipticalcone (Fig.

3.2b).The cone axisliesalong the(y-Yc)-z planeand has theadditionalparameters

(x = O,y = O,z = -p)ffitipof cone

03 = inclination angle of cone axis measured from z-axis

(01, 02) = half-cone angles in the (x - xc) - z and (y - Yc) - z planes.

16



The boundary must be adequately defined in order to calculate the diffracted field ( see

Section 3.5).

17

3.3. The Source

The source is assumed to have a wen-defined phase center at point Pt that is the

radiating point for a spherical wave (l-li,Ei). When an array feed is used, each radiating

element must be considered separately. The scattered fields from each feed element are

superimposed to obtain the total field at point P2 in the aperture plane. It is desired to know

the value of the wave (HI,E_ where it is incident on the reflector S.

3.3.1. Feed source

The surface current at the radiating aperture of the ruth element of the feed array

may be expressed as

Jm(x,y) = Im(exae jv + eyb)

where (a,b,_/) are real and

(3.7)

a2 + 132 ffi 1. (3.8)

The parameters (a,b,¥) are chosen to establish the feed polarization. Table 3.1 shows the

values of (a,b,¥) that correspond to commonly used polarizations.

Table 3.1. Various feed polarizations

a b ¥

linear x 1 0 0

linear y 0 1 0

P CP i/ 2 1/,/2

LHCP I/_2 I_2-90 °

The radiated electric field due to Jm given by (3.7) is



E,,, - "Jrm m(O, )

where fm(e,q)) is the active element pattern of the mth element.

el)proximately expressed by

(3.9)

The function f,, may be

where

r.(o,¢)=eeue=(o)(ae cos + bsin¢)+ e,UHm(e)(bcosO- aeJVsin )(3.10)

UEm(0) = E-plane active patmm of the mth element

UHm(O) = H-plane active pattern of the mth element.

There are two particular cases of UF.m and UHm that are of interest. The f'LrStcase is the q-

feed [10], where the functions are approximated by

U_(O) = (cose) qa= volt

UtaH(0) = (Cos0)q_ volt .

The second case is the numerical feed.

(3.1 la)

(3.1 Ib)

Sometimes it is possible to measure the far-field

pattern of an element. In this case, if the pattern can be well approximated by its E-plane

and H-plane patterns, it may be easier and/or more accurate to use measured data for U_n

and UHm. In this case, the values for U_ and U_ are read from a table. The radiated far

field of the feed array is the product of the element field (3.9) and the array factor,

M

E.-- _ E=(r)-Ime, jke.'pm
mR1

where Em is given by (3.9), Im is the complex excitation coefficient, and

(3.12)

eu = sinOcos_ex + sinOsinCey + cosOez

Pm = xmex + ymey + Zmez.

(3.13)

(3.14)

18

Another feed type that is commonly used is the open-ended waveguide. This feed

is evaluated using PO. In this case, the incident fields in the waveguide are assumed to be



the dominant mode in the waveguide (e.g.,TEl I).

incidentfieldplusthereflectedfield.The farfieldis

ER=0,

: -l-y ' cos0](N,cos++N:in+)
F-'e= _I +t k I+FA'_: a

_jke--J_[co,o+tk I+I"A 8 ) j

N is the vector

N = (I + r)fF__ c_(xsinec°s# +y,inesin#) dS
J^

and tisdefinedby

[_mll

t= -- for TE-modes
cop

The phase constant is defined by

{3m _ (k2 _ _,,)I/m

Oog
and t= w--'-for'I'M- modes.

Pm

The totalfieldin the apertm'cisthe

(3.15a)

(3.15b)

(3.15c)

(3.16)

(3.17)

In this ru-port the most-commonly used open-ended waveguide is a circularguide excited by

a TE mode (Fig. 3.3). In this case the rectangular components of Eli are [7]

jcottr, m,
Ex = 2 [Jm_l(Knmp) sin(m- 1)W + Jm+l(KnmP) sin(m + I)W] , (3.18a)

jo_tr,_
Ey = 2 [Jm-t0CmnP) cos(m- 1)W- Jm+t0cmnP) cos(m+ 1)q] (3.18b)

wht_'c Jm(x) is the ruth-order Bessel function and J'(Kmna) = 0, where a is the radius of the

waveguide. This leads the far-field expressions

19

Eo jm+'_c-J_r[l-_cos0 _1-_co,0)l Jm(kasin0)= + + - Jm(r'mna) sin0 sin m_) ,

(3.19a)



-k r'mn /

COS 1"ri_) .

(3.19b)

3.3.2. Power radiated

We will assume for now a planar feed array. The total radiated time-averaged

power of the array, assuming forward radiation only, is given by

g

lfT d0 :XE,(r).F_:(r)r2sinOd_
Przd= ZoJ o (3.20)

with

7-,o= _ = 120_ ohms.
(3.21)

Substituting (3.8) into (3.16) gives

ZZ * 1 2 • c,jke.-fp,--p,)r2sinedq_Prad= Im de Em(r)'F-_(r)

m=l n=l (3.22)

Defining the power rs_liate4 as follows,

M M

m=l n=t (3.23)

a new term, the power matrix Amn, appears.

3.3.3. Incident field on reflector

Up until now, all positions have been determined in the feed coordinate system.

However the reflector surface S is defined in the main coordinate system. The feed

coordinate system can be related to the main coordinate system by an orthonormal

transformationmatrix

F FT =
[e_ ey %] =A[ex e7 ez ]T (3.24)

2O



Therefore a point P = (x,y,z) on reflector surface S can be expressed in the feed coordinate

systemby

[XF yF zF]T_ _[(X_Xl) (Y--Yl) (Z-Zl)IT (3.25)

where Pl " (Xl Yl Zl) is the location of the first feed element in the main coordinate system.

Using (3.18), E i can be found at P. The H-field can then be found by the relation

rxE !
H I - [I-IrFHe_ I-I_] T= 7,o (3.26)

The incident field is then converted from spherical coordinates to Cartesian coordinates.

F'mally, the H-field is converted to the main coordinate system by using

=T

[H z _ H2] T = A [I'Ix_ I'ly_ I-IzF]T

This is repeated for each element in the feed array.

(3.27)

21

3.4. Geometrical Optics Field

The GO field consists of two parts: the incident field H i and the reflected field H r.

The incident field at the observation point P2 on the aperture grid is taken to be zero, since

it does not contribute to the far-field pattern. The first step for determining the reflected

field istolocatethereflectionpointon thereflector surfaceS.

3.4.1.Reflectionpoint

Given a startingpoint atthe feed PI = (xl Yl zt) and an ending point P2 on the

aperturegrid,a refiectionpointO r= (xy z--_(x,y))on S may exist.The vectors

dI--ex(x - xI)+ ey(y- Yl)+ ez(z- zl)

d 2 -- ex(X 2 - x) + _j(Y2 - Y) + ez(z2 - f(x,y)) (3.28)

are theconnectingvectorsfrom Pl toO r,and O rtoP2,respectively.The conditionon the

reflection point is that the distance (dr + d2) be a minimum, i.e.,



_(d 1+d 2)- 0, _v(d1+d 2)-- 0
y

which can be writtenexplicitlyas

(3.29)

_11 (x- Xl)+ [f(x'Y)-Zl]_l + _--_((x- x2)+ [f(x'Y)-z2]_l = 0

_z]afl i -°
The rootofthe two nonlinearequationsin(3.30)givesthelocationof thereflectionpoint.

For a given Px and P2,theremay be 0, 1,or more than I reflectionpoint The system of

equationsin (3.30)could alsobe solvedifthe threepointsare coUinear. An additional

conditionavoidsthis.

x-x1 x-x2_ 2 (Y-Yl Y-Y2_ 2 (z-zi z-z2_ 2
d, ) +t dl + d2 J J >s (3.31)

(3.32)

where 8 is a small positive number.

A root may exist but be outside r. If

11<1

then the root is inside the boundary r and is in fact a reflection point on the reflector.

Otherwise the point is discarded. The parameter It is given by

1

u , _,

ifr lieson an ellipticalcylind¢_and by

2 1
11= ]z l-l{[( x - Xc)COt0l ]2 + [(Y -- Yc)COt02] }2" (3.34)

if r lies on an elliptical cone. The parameters xc, yc, K1, K2, 01, and 02 describe the

boundary.

3.4.2. Formula for reflected field

The reflectedmagnetic field at P2 isgiven by
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Hr(p2) = (DF)e-H {HI(Or) - 2[Hi(Or)'eN]eN) (3.35)

where DF is the divergence factor and eN is the surface normal of the reflector at Or. The

normal is chosen to be pointing towards the source so that (eN-z) is always greater than

zero. Explicitly, eN is given by

e N = A(-fxe x - fyey + z) (3.36)

where
1

A= + (_ + _ + I)_ (3.37)

and the subscript x of fx, for example, means parfal derivative with respect to x. The

divergence factor in (3.35) describes the spreading out of the wavefront and is expressed as

1 !
DF =

where the square roots take positive real, negative imaginary, or zero values (so that DF is

positive real, positive imaginary, or infinite). (Rrl, Rr2) are the principal radii of curvantre

of the reflected wavefront passing through Or. Their computation is covered in Section

3.4.3.

3.4.3. Curvaun'es of reflected wavefront

The formulas _'om [II] are used in calculating (Rrl, Rrl). The three orthonormal

base vectors of the incident pencil are chosen to be (Figure 3.4)

e_(z-zl)-e,(x-xl)

[(z-zl)2+(x-xl)2]I/2 (3.39a)

(3.39b)

i
e 3 =

ex(x - x 1) + ey(y - Yt) + effi(z - z l)
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[(x - xt) 2 + ( y - yl )2 + (z - zl)2] 1/2 (3.39c)



where(x, y, z) arethe coordinates of the reflection point O r. Those of the reflected pencil

are chosen m be

e_ = ez(x2 - x) + e_(y2 - Y) + ez(z2 - z)
• _211/2 "

[(x2-x) 2+ (Y2- Y)_+ tz2- zj j

Note that (3.40) establishes a left-hand system, i.e.,

e_×e]=-e_ .

This does not affect the final solution of (Rrl, Rr2). The three orthonormal basis

vectors of reflector S at Or are chosen to be

eS= e, × ezfx

(1+ f_)_

eS = es x els

le_× eSi

es = e_

From (3.39) and (3.41), the elements

pim. = e_-e s , m_ = I. 2. 3

can be cal_ withtheremlts

(z - zl) - fz(x- xl)
P_I =

(1 + _)lr_[(x- Xl)2+ (z- zf] m

-_[(x - xt) + fx (z - zt)]
P_2 -

A(1+ _)m[(x- xf + (z- zf] lr_

(3.40a)

(3.40b)

(3.40c)

(3.41a)

(3.41b)

(3.41c)

(3.42)

(3.43a)

(3.43b)
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P_I =
--(x - xl)(y - Yl) - f_(Y - yl)(z - zx)

(| + _)l/2((x - Xl)2(y - yl )2 + [(z - Zl)2 + (x - Xl)2] 2 + (y - yl)2( z - zl )2}1/2
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(3.43c)

P_2 ""

f_fy(x- xl)(y- yl)+(1+ f,)[(z- zt)2+ ix- xl)2]- f_(y- yt)(z- z_)
A(1 + _)l/'2[(x - xl)2(y - yl) 2 + [(Z - Zl)2 + (x - Xl)2]2 + (Y - yl)2( z - zt) 2]It2

(3.43(!)

ph= _ A[fl_ - x_)+ f_(y- y_)- (z- -01 •
d i

The first four elements ((3.43a) - (3.43d)) form the 2 x 2 mau'ix _.

particular choice in (3.40), we have_ = _,i The curvaturematt'ixof the incident pencil is

(3.43e)

Because of the

"[::°1Q=
d_' (3.44)

and the curvature rnauix of reflector S at Or is

I
La(ee - _e)/e a2(ge- 2fe+ _/e)j (3.45)

where

F--f:,,

• = -afxx , f = -Afxy, g = Afyy

The desired curvature matrix (_ may be calculated from the following mm_ equation

_- _ + 2l:_3[(_i)T] -1 _(_i) -1 .

The four elements of _ may be denoted by

Q12

Then the desired radii of curvature of the reflected wavefrontatOraregiven by

I 1 I {(QII + Q7..2)+ 4 (QII+ Q22)2- 4(QIIQ22 - QI2Q2I)}

Ri ' R_=_ "

(3.46)

(3.47)

(3.48)



Both Rrl and Rr2 arc real. If the radius is positive, then the corresponding normal section

of the reflected wavefront is divergent. If the radius is negative, then the corresponding

normal section of the reflected wavefront is convergent.

If then: is more than one reflection point, then the toud reflected field is the

superposition of the reflected fields for each reflection point. If no reflection point exists,

then the reflected field is zero. If the reflected point is near the boundary, then the reflected

field is calculated as normal, but the diffracted field is adjusted later by using UAT so that

the total field is correct.
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3.5. The Edge-_ted Field

In addition to a reflected field at P2, there is also an edge-diffracted field. The first

step for finding the diffracted field is to find the diffraction points on the boundary F.

3.5.1. Diffraction points

Consider a source point P1 at (x'l, Y'], z':) and an observation point P2 at

(x'2, Y'2, z'2) with coordinates given in the prime coordinate system (Fig. 3.5). A

diffraction point O d with coordinates (x', y', z') can be determined from Ferrnat's

principle, much as the reflection point was
J

-_, (d3+ d4)= 0

where d3 and d4 are distancesfrom Pl to 0 d and 0 d toP2_ respectively.

rewrittenas

i t

g,- x2lag,
gl - xl +

k. d3 04 -_)'_
+ /

g2 - Y2 _ ag2 g3 - zl

d--V

(3.49)

This may be

diffraction points can exist.

where (gl, g2, g3) are parametric functions describing x', y', and z' in terms of @'. A root

of this equation is a diffraction point. Depending on the geometry, as many as four

(3.50)
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3.5.2. Formula for diffracted field

Each _on point has associated with it a contribution to the diffracted field Hd.

The fommla is

Hd(p2) = g(kd4) _/1 1 . sl[_ [elsDhi_ + eaVSi.i_]+ (d l)

when: g is a cylindrical wave factor

(3.51)

(3.52)

(3.53)

where [3 is the angle between tangent t and d4. The term !c is the curvature of curve r and

ea is the normal of this curve at O d. This leads to a final expression for the divergence

factor of the diffracted field

DIeD =
1 1

1+ (d4]R1) _ (3.54)

__1 1 K _ ed4].ea
Rl = d3 + led3

equation[11]

The other factors are explained in more detail in the following sections.

3.5.3. Divergence factor

The square root in (3.51) can be positive real, negative imaginary or zero. Rt is a

radius of curvature of the diffracted wavefront passing through Od and is found from the
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where

+ry-;, .... <,--
_ d3 +

+L_ + [g'_(g_;- g'_s_)- s'_(g_g_- g'_g;)_
(3.55)

where a g-prime (g_ represents a derivative of g with respect to _',

.... tTm -II1 -- x'l)g'l + (Y Y'l)g'2+ (z - zl)g3] I
(3.56)

(3.57)

3.5.4.Diffractioncoefficients

The hard and softKeller's_tion coefficientsD h and D s are definedin Eq.

(5.22)of [II]as

I

DS.h= zi _.Zr = ...secl(,_ #i):I:sec_(t + ,i) . (3.58)

The angles _ and #i are shown in Figure 3.6. They are calculated from the relations

(I) (Projds)'(et× en)
c°s_i= - [Pmj dsl (3.59)

cos_ =

(Proj _)'(et × en)

el (3.6O)

Here Proj d3 istheprojectionof d3 on theplaneperpendiculartoe_. This can be rewriuen

as

cos#i=[S31MI+S_2M2+S33M3][S]I+ S_2+ S]_]-I:_ (3.61)



where

cosd_= [S41M 1 + $42M2 + S43M3][S421 + $422+ $423]-1/2 (3.62)

S31 = (x - x 1) - g

, d3Q,

$32 = (Y - Yl) - -'ff"g2

S33 = (z - zl) - g

. d4 Q,
S41 = (x2- x) - --F-g1

S42 = (Y2 - Y) -

'S43 = (_ - z) -

= [N2fi - N3g'2]

1 ' Nlg;]M 2 = _-[N3g 1

, !

M 3 = _'[Nlg2 - N2g 1]

and N1, N2, and N3 are the components of eN, the normal to surface S, in the (x', y', z')

(3.63)

coordinate system.

The solutions of $ and $i arc subject to the following tests:

(i) 0 < qbi < _ if T3 > 0, and _t < qbi < 27t if T3 < 0, where

T 3 = (-Proj d3)'e N = -S31NI - S32N2 - S33N3

(ii) 0 < _ < _ if T4 _ 0, and x < t_ < 2x ifT4 < 0, where

T 4 : (-Proj d4)'e N = S41N1 + $42N2 + $43N3 • (3.64)

('tii) If the observation point P2 is exactly on the incident shadow boundary, then

1_. (_i./t; -- 0 . (3.65)

(iv) If the observation point P2 is exactly on the reflected shadow boundary, then

+ ¢i. _ = 0 . (3.66)
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When P2 is on the incident shadow boundary (case iii), the factor Zi becomes

infinite. The resulting computational problem is avoided by moving P2 slightly whenever

this occurs. Similarly, Xr becomes infinite in case iv, and the same procedure eliminates

the problem here also. UAT will be used later to modify the diffracted field II d to H D.

3.5.5. Spherical components of incident field

Fields Hif5 and Hia from (3.5 l) are the two spherical components of the incident

magnetic field H i evaluated at Od in the directions [_iand a I. The base vectors are shown

in Figure 3.7 and may be calculated from

ep' = (e=, x d3)/d3

ect' = (et x d3)l(d3sinp)

Then it can be shown

H_ "- Hlg + H292 + Hsg3]
ramp

(3.67a)

(3.67b)

I I t e * e

+ H3[gl(Y - Yl) - g2(x - Xl)]

(3.68a)

1 ,( ..........Pd in Hl[g z'- z 1) - g3(Y - Yl)] + He[g3 (x - xl) - gl(z - el)]

(3.68b)

where (I-It, H2, H3) are the components of H i in the primed coordinate system.

3.5.6. Rectangular components of diffracted field

The only part that needs to be determined now are the spherical base vectors for the

diffracted field, ep and e¢. They are defined by equ_ons similar to (3.67), namely,

ep = (e_' x d4)/d,t (3.69a)

e_ = (e t × d4)/(d,tsin[_) • (3.69b)

Once these vectors are determined, they must be expressed in terms of the rectangular

components (es, ey, ez) so that the diffracted filed may be superimposed upon the

reflected field. The corresponding die.ted E-field is then

= -_4_[Hd(p4) × d4] • (3.70)Ed(p2 )
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3.5.7. Detour parameter

As mentioned in Section 3.5.4, when the observation point is near the reflected

shadow boundary, the diffracted field It d is not valid. The "detour parameter" is used to

determine ffthis happens. From Section VI of [11],

= elk(d3 + d4 -dl - d2)] I/2 • (3.71)

Here e is the shadow indicator of the reflected field and is +I or -I if the point is in the

shadow or lit region of the reflected field, respectively. It may be shown that

¢ = S -cos].(, + ,i) (3.72)

When the caustic of the reflected field fails on the reflected field shadow boundary, _ is

imaginary;, otherwise, it is real. Following the numerical study in [12],

J_ J = 2 (3.73)

is the dividing line. This means that ffJ _ J > 2, then the field H d is valid. If not then H d

must be replaced by H D. When _ is small, (dz + d2) and (d3 + d4) from (3.71) are nearly

equal and an alternate formula for _ is used, namely,

,4d4[ 1 + (d4/Rl)]

(3.74)

1
- -cos]-(, + ¢) sins

• + (d2/R )JX + (d2/R_)

_--+ 0,

F(z) = x-I/2e_4 j_ze-Jt2dtand

where F is Fresnel integral defined by

HD(P2) = Hd(p2)+ [F(_)- F(_- 1(1-_)]Hr(p2) ,

3.5.8. Uniform asymptotic theory

We shall calculate by the UAT developed in [13-15], namely,

(3.75)

(3.76)

where the square root in the numerator is the divergence factor of the diffracted field and

the square root in the denominator is the divergence factor of the reflected field.



(3.77}

Thefactor(1 - s)/2 in (3.75) is one if P2 is in the lit region and zero if it is in the shadow.

The multiplier for H r goes to zero as _ goes to infinity, so that H D becomes equal to H d.

Near the boundary, H D is finite and compensates to make the total field continuous.
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3.6. Secondary Pattern Computation

From field equivalence principles, solutions for the far field may be obtained if the

tangential fields E, and Ha on the aperture plane are known. This can be done directly.

The following vector quantifies may be defined

where

f(u.v) = _s.E,(x.y) e_ux + VY)dxdy

g(u.v) = f_s H,(x.y) e_(ex+ _)dxdy

u - sine cos_

v -- sine sin_

k-- 2_,/7,.

(3.78)

(3.79)

0, _b= sperical coordinates of the far-field point.

Since the aperture fields are tangential and the far field is assumed to be in the z-direction, f

and g will have only x- and y-components. There are three equivalence principles and each

leads to a different pair of equations for the the far-field E-field components Ee and Et.

(1) Using E, and H.

F_= [f,cos,+ fySin_+ Zocose(gy_ - g,sin,)]

Jke-_ [cose(fyCOS,- f.sin,) - 7-.0(gySin,+ g,cos,)]
Et" 4m"

(3.80a)

(3.80b)

(2) Using H,

Ee = _ Zocose (gyCOS_- gxsin#p) (3.81a)



jke-'_
Et = _ 4_" Z o (gySin_ + gxCOS¢)

(3) Using E,,

E, = _ _seC_os, - f_._,).

(3.81b)

(3.82a)

(3.82b)

This method is exact if the aperture fields are known everywhere. In practice the aperture

plane must be truncated in order to employ the FFT.

3.6.1 FastFourieru'ansform

Some manipulation of the integrals in (3.78) and (3.79) must be done in order to

use the FFT. When the components of the aperture field have been correctly scaled, the

fields can be approximated by a double summation over the grid points in the aperture

plane. The grid is two-dimensional and covers a portion of the aperture plane that is

slightly larger than the reflector, i.e., the grid extends past the projection of the boundary F

on the aperture plane. Each term includes a scalar constant factor, the Fourier coefficient

C-,nm. After some more manipulation and evaluation of the integrals, the expression for fx is

fz(u,v)=K
n,_ltm=M l

x(rnZ+u(x2-xl)) _t(r_+v(Y2-Yl))

7, 7_
(3.83)

where

__ c_ _

K = (x 2 - x)(y 2 - Yl) eJY[ubh+_+ v<Yt+Y2)]

Similar results can be obtained for the other far-field components.

3.6.2. Polarization of secondary pattern

(3.84)

The polarization of the secondary pattern is described by the elements (aP,bP,¥P).

In the planar aperture of the main reflector at z = 0, the tangential electrical field polarization

can be written
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Eap(Z-_0 ) - (ezaPe j@' + eyb p) g(x,y) ,

where g(x,y) is the aperture field distribution in the xy plane.

orthonomml reference and cross-polarization vectors of the secondary patlern by

eR = %(aPeJ_cosq)' + bPsinq )') + %(-aPcJ_sin_ '+ bPc°sq)')

eC ffi ee(aPe-JwPsins_ '- bPcos_ ') + %(aPe-JVPcos_' + bPsin_ ') .

(3.85)

From [16] we can define the

(3.86)

(3.87)

The polarization parameters (aP,bP,¥ p) of the secondary pattern are related to the

parameters (a,b,¥) of the feed by the relationship

ap = a, _ = b, YP = V + it (3.88)

For example, this means that an RHCP feed produces an LHCP secondary pattern. This

relationship is true only when a single reflector is involved. For the multireflector case this

may change. It is important to keep track of the number of reflections in the system in

order for the secondary pattern polarization to be correct.

3.6.3. Directivity

Once the ref-pol of the secondary pattern for a single element has been found, the

process can be repeated for all of the elements. The total ref-pol of the secondary pattern is

M

ET = _ _I=
mr1 (3.89)

where ERm is the ref-pol field for the ruth element assuming excitation Im ffi 1, and I_ is the

actual feed excitation.

The directivity of the reference polarization is defined by

D_(O,d_) ffi _p (3.90)

where Prod is the power radiated by the feed. It can be calculated by a brute-force

integration over either half-space or all space. The cross-pol directivity may be calculated

by a similar method.
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3.7. Concluding Remarks

The main usefulness of the AI method is that it is vcry general in nature. Until

reccndy, when the currents on a reflector were found, steps would be taken to reAucc the

resulting integral so that its computation would be possible. These steps were usually

based upon some aspect of the reflector geometry. With the advent of the supercomputer,

this is no longer necessary. A brute-force FFT can be used to evaluate the fields in the

aperture without any geometry-based simplifications being made. Since the FFT is not

dependent upon the reflector shape, this method may be applied to arbitrary reflectors. In

addition, the method may be repeated in order to include additional reflectors.
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Figure 3.5. Diffraction from boundary V of the _lector.
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Figure 3.6. Projection of Figure 3.5 on a plane perpendicular to tangent et.
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4. WIDE-ANGLE SCANNING FOR REFLECTOR ANTENNAS
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Traditionally, reflector antennas arc designed for limited scan 4. A symmetrical

parabolic reflector with f/D=0.4 can only scan :l:5 beamwidths (BW) with less than 2 dB

loss [4]. If the reflector diameter is 1,000 _, the _ BW scan corresponds to only "1"0.5°,

which is a very narrow field of view.

In some future applications, the antenna requirements will be quite different h'om

what they presently are. One example is the NASA Earth Science Geostationary Platform

Project. The preliminary antenna specifications are as follows:

Frequency range 20 GHz - 200 GHz

Amenna diameter 15 m (I,000_.- 1O,000 X)

Scan range 1 40o (:k33 BW - :k330 BW)

Scan range 2 +8 ° (+133 BW - :1:1,333 BW)

Note that the scan requhen_nt has been significantly increased from the traditional value of

:I:5 BW. Usually a phased array design is used to satisfy specifications such as these.

A phased array antenna design is an order of magnitude more complicated than a

reflector design. This is due to the large number of array elements and the beam-forming

network contained in the design. Reflector antennas have the additional advantage of being

less expensive and fighter in weight than phased arrays. Therefore, it is desirable to use a

reflector antenna design if at all possible. The question then is "Can a reflector antenna be

designedthatiscapableof meetingthesespecifications?"

This paper examines and compares sixdifferentreflectordesigns. We intendto

show how farthereflectorperformance can be stretched.The objectistoachievea wide-

angle scanthatwillsatisfyrequirementssuchas thoselistedabove. The firstthreedesigns,

PI, P2, and P3, areparabolicsinglereflectordesigns.These threedesignsareconsidered

4 Some of these results have been published in Microwave sad Optical Technology Letters in July 1990
[_).



in Section 4.1. The first design is a center-fed, single-element feed design with f/D=2

(Fig. 4.1a). Scanning is accomplished by mechanically tilting the reflector. The second

design has f/D=l and uses a 19-element cluster feed but, otherwise, is similar to the fast

design (Fig. 4.1b). The third design is an off-set reflector with f/D=2 and an eleclzonically

scanned cluster feed (Fig. 4.1c).

The last three designs, C1, C2, and C.3, are dual reflector cassegrainian designs.

They are considered in Section 3.2. The three designs all use the same reflector geometry.

The first design scans by mechanically tilting the main reflector (Fig. 4.2a). The second

design scans by mechanically tilting the subreflector (Fig. 4.2b). The last design scans by

tilting both the main reflector and the subreflector (Fig: 4.2c).

Data on extremely wide-angle scans of reflector antennas arc scarce in the literature.

Hung and Mittra [17] in 1986 did analyze a center-fed symmetrical parabolic reflector with

a cluster feed and calculate patterns up to a hundred-beamwidth scan. We have verified our

single reflector computer code by comparing our results with theirs.
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4.1. Single Reflector Antennas

4.1.1. Pl: symmetric parabolic reflector with f/Dffi2

Two contributing factors to poor scanning ability are (i) short focal length and (ii)

high offset. For these masons, the first design considered is a symmetrical parabolic

reflector with an unusually long focal length. Design P1 has a diameter D=I,000 _. and a

focal length f=2,000 g, thus giving f/D=2. The feed is a long circular open-ended

waveguide with radi'us a=3 _ A study was done of the directivities and beam efficiencies

corresponding to various feed radii. The results are shown in Figure 4.3, with directivifies

converted to antenna efficiency. Antenna efficiency is defined as the fraction of the

nominal directivity that the given directivity is, namely,

= (Di ctivi )/(r'D/ )2 (4.1)



In this case, the nominal directivity (xD/_) 2 is 69.9 dB. The radius value chosen was that

which maximized beam efficiency. The antenna has a half-power beamwidth

HPBW=0.07 °. Beam efficiency is calculated as the fraction of power hitting the reflector

that is contained in the beam defined as being 2.5 times as large as the HPBW [18]. In this

case, the beam has a half angle of approximately 0.09 °. Note that this definition of beam

efficiency does not take into account spillover loss. The chosen radius value of 3_.

produces the highest beam efficiency, 11=0.91. Scanning is accomplished by tilting the

main reflector. Tilting the main reflector by a degrees results in a scan angle 0-2a. The

main advantage of tilting the reflector instead of moving the feed element is that the scan

angle is twice the angle of the tilt If the feed were moved, then the angle of scan would be

equal to the angle that the feed was moved through. This is referred to as the mirror effext.

Since for any reflector design, the scan loss increases as the feed moves away from the

reflector's focal point, a significant _luction in scan loss is gained by tilting the reflector

instead of shifting the feed.

of reflector P1 are

I. Virtually no feed blockage due to the small size of the single element

feed.

2. Depending on the exact arrangement, there is a Iossy transmission

distance between the feed and the receiver/transmitter. To avoid

excessive transmission loss at high frequency appficafions (60 GHz or

more), it may be necessary to connect the feed and the

receivm'/transmitter via a beam waveguide.

3. Because of the mirror effect, the scan range is twice as far as for the

conventional shifted feed design.

The radiation pattern for the on-axis beam is shown in Figure 4.5. The radiation

pattern is calculated by a standard physical optics reflector code [19]. The directivity is

66.7 dB which includes the following losses:
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Nominaldirectivity(xD/X)2

Feedspilloverloss

Amplitudetaperover reflector surface

Directivity

69.9 dB

0.6 dB

66.7 dB

The above directivity, as usual, does not include the loss due to the feed transmission line.

The 3 k radius feed produces a pattern that has a null before the edge of the reflector (Fig.

4.4). This pattern results in a sidelobe level of -31 dB. It is a commonly used rule-of-

thumb that to maximize beam efficiency, the fast feed pattern null should lie on the reflector

edge, which is at 0max=14.25 °. The first null lay on the reflector edge for feed radius

a=2.3 7,. This value produces close to a maximum in beam efficiency (see Fig. 4.3).

This reflector has extremely good scan characteristics because of the long f/D and

the mirror effect. The scan loss is only 0.6 dB at 00=8 ° (Fig. 4.6), corresponding to a 114

beamwidth scan. The sidelobe level does increase from -31 dB to -13 dB as expected. At

a larger scan angle 00=20 ° (286 beamwidth scan), the scan loss is 5.1 dB and the pattern is

badly distorted with a high shoulder (Fig. 4.7).

4.1.2. P2: symmetric parabolic reflector with f/D=l

A drawback of Pl is its excessively long focal length (2,000 k). Now let us reduce

it by one half, giving a f/D=1. Then wide-angle scan is possible only if a cluster feed is

used. A brief explanation of the cluster feed concept is in order at this point. The feed

cluster consists of N identical elements with complex excitations

I=[I I, I2,...,IN]
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(4.2)

We wish to determine I so that, when the beam position is at O0' a prescribed

antenna parameter such as directivity, beam efficiency, or sidelobe level is optimized. To

this end, let us introduce an element secondary pattern vector E such that

(4.3)



where F.2 (00), for example, is the co-polarization secondary pattern in direction 00 when

element 2 is excited with

I2" 1I==O , forallm# 2. (4.4)
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There exist ttLreemethods for determining I in the literature.

(i) Con iu=ate Field Matching [20-27]. The cluster excitation is simply set equal

to the complex conjugate of E(00), i.e.,

(4.5)
I=[E(Oo)]*

Strictly speaking, such a choice of clusterexcitation does not optimize any

particular antenna parameter. For practical purposes, however, it does lead to

nearly optimum directivity in most cases.

Ovtimum Directiviw [28]. For a feed cluster with prescribed primary

patterns and element locations, the directivity in direction 00 is optimized by

choosing

I = _-l [_ (Oo)]* (4.6)

I

where A isa N x N squarematrixwith elements

1 f 4x

A== j ° F.,)da
(4.7)

where C is a normalization constant, and the integration is ov_ 4x - radiation

aphere. When the element spacing of the cluster is large (a few wavelengths),

matrix _ is nearly an identity matrix. Then the solution in (4.6) reduces to

that in (4.5).

Sidelobe Control [29,30]. The element secondary paucm vector E in (4.3) is

normagy calculated in a transmitting approach. By reciprocity, it can be
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calculated equally as well in a receiving approach when the reflector is

illuminated by an incident plane wave from direction 00. In the receiving

approach, there is an additional advantage that the amplitude of the plane wave

can be _ It is found that the amount of taper controls the sidelobe level

of the final secondary pattern when the whole cluster is turned on.

Return now to P2 in Figure 4.1. A 19-elernent cluster feed is used. The individual

elements are circular feeds with radius a=l.2 _,. This value is chosen to maximize

directivity for a single feed scanned on-axis. This radius feed also produces a relatively

good beam efficiency with 11=0.88. The maximum beam efficiency was 11=0.89, which is

recorded for a feed with radius a=l.3_ Sidelobes for the a=l.2 _. feed were -23 dB. This

was not nearly the best possible sidelobe value, as a feed with radius a--l.5 _. had sidelobes

that were -32 dB, along with 11---0.87. The primary pattern of the a=l.2 _. circular

waveguide feed was approximated by a (cos0)q pattern with q=9.5. This value of q gave

good sidelobe matching but the main lobe was 0.6 dB higher, with a maximum directivity

of 68.9 dB. Spinover loss for the cosq0 feed pattern was 0.4 dB for a=1.2 _ The cluster

feed is used to help compensate for the higher scan losses that result from the lower f/D.

At small scan angles only the center feed element has a relatively strong excitation (Fig.

4.8a). For an 8 ° scan (i.e., the reflector is tilted 4 °) only two of the outer ring elements

have significant excitations (Fig. 4.8b). This indicates that for scans under 8°, a 7-element

cluster feed would probably work almost as well as a 19-element feed. When the reflector

is tilted 10 ° for a scan angle of 20 °, nearly all of the elements are excited (Hg. 4.8c). At

0O--8 °, the scan loss is 3.7 dB (Figs. 4.9, 4.10), and at 0O=20 °, the scan loss is 7.4 dB

(Fig. 4.11). Very similar scan loss results were obtained with a=1.5 _. feed. This is not as

good as the results for P1, but it is only a few decibels worse, The advantage of F2 over

P1 is that the focal length has been cut in half. The disadvantage is that a 19-element feed

is much more complicated than a single element feed. For both of these center-fed designs

the feed blockage is negligible.
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Though design P2 has a higher scan lossat 0o=20° man P1, the beam is less

distorted(seeHg. 4.7 and Fig.4.II),because atscan anglesof thissize,theclusterfeedis

able to form a much better beam pattern than does a single element feed. For angles below

60--8 °, there is no benefit to design PI from using a cluster feed. However, scan loss

could be reduced for large scan angles by using a cluster feed.

4.1.3. P3: offsetpambolic reflector

Design P3 is an offset parabolic reflector. Offset height must be kept as small as

possible to avoid intolerably high scan loss. Unfortunately, small offset leads to serious

feed blockage. A possible way out of this dilemma is to use two identical reflector

antennas: one for scanning up and one for scanning down as sketched in Fig. 4.1. The

focal length is 2,000 _, and the reflector diameter is 1,000 _., for a f/d=2. The offset height

is zero. In contrast to P1 and P2, this design utilizes electronic scanning. This means that

a large feed array is used. Up to 19 elements are excited at any time. In order to cover a

scan range from 00=0 ° to 00=8 °, a semicircular array with a radius of 283 _. must be used.

The individual feed element has a radius a=I.065 _,, meaning that roughly 65,000 elements

are needed for the entire device. This feed size is chosen so that if the excited element is

turned off and an adjacent element is turned on, then the beam is scanned 1 BW. This

antenna has an on-axis directivity of 66.2 dB when a single element is turned on. The

spiUover loss is 3.5 dB. This is quite high since the feed element is so small. Note that

this antenna has roughly the same f/D ratio as PI, which uses a feed that is three times

larger in radius.

The advantage of the electronic scan is well-known: it is fast and inertialess.

However, elecm)nic scanning forces the use of a feed array that has half the diameter of

one of the reflectors used. Therefore, this design uses about a fourth as many elements as

a phased array with the same aperture size. The savings in complexity are almost IosL In

addition, the overall volume occupied by this antenna is much larger than that needed by the

previous designs. For the on-axis beam, only the center element of the 19-clement cluster



is significantlyexcited(Figs.4.12,4.13),with a directivity of 67.3dB. This is slightly

higherthan that excited by a single element feed (66.2 dB). Although excited with small

excitations, the surrounding elements do help to reduce the spillover (Fig. 4.15).

Another problem is that the design puts a physical limitation on the maximum

scanning angle, because the feed elements do not move. The previous designs could have

been scanned farther than 20 ° if it had been desired. This design has a directivity of 67.3

dB, with BW=0.06 ° and sidelobes at -18 dB. Patterns were computed at scan angles

00=0°and 00=8 °. The feed excitations used to obtain these results are shown in Figure

4.12. At 00=8 ° the scan loss is already 6.3 dB (Fig. 4.13, 4.14). The advantages of

electronic scanning are that it is quicker than mechanical scanning and that it will not upset

the equilibrium of the spacecraft since there is no physical motion. Some of the drawbacks

listed above could be avoided by mechanically moving a 19-element feed cluster instead of

electronically scanning. However, this design has much more scan loss at 00--8 ° than

designs P1 and P2.

5O

4.2 Dual Reflector Antennas

4.2.1. Cl: cassegrainian reflector with tilted main reflector

Design C1 is a dual-reflector cassegralnian antenna. The main reflector is parabolic

with a focal length of 2,000 _, and a diameter of 1,000 _. for a f/D=-2. A Cassegrain

antenna may be considered as a folded version of a parabolic reflector. In many

applications, it is desirable to reduce the length of the antenna and to place the feed directly

behind the vertex of the main reflector. These are the reasons for folding the antenna.

With f/D=2 for the present case, it is not possible to fold the feed close to the vertex

without either excessive spiUover loss or an excessively large subreflector or even both. In

the present design (Fig. 4.2), the hyperbolic subreflector has a diameter of 115 _. and is

located 1,650 _, from the main reflector vertex. The circular feed has a radius a=l.5 _. and

is located 1,300 _. from the main reflector vertex. This feed size is chosen to produce 10



dB edgetaperon thesubreflector.Directivity for this design is 67.1 dB, with BW=0.06 °

and a -18 dB sidelobe level. Scanning is accomplished by lilting the main reflector. The

scan angle O0-a I, where CZI is the angle at which the main reflector is tilted. The

performance of CI, shown in Figures 4.15 and 4.16, is similar to that of PI, the unfolded

version of CI. The use of the subreflector does change the aperture taper. Consequently,

the sidelobes of C1 and P1 are differenL

4.2.2. C2: cas_grainian reflector with tilted subreflector

Design C2 has the same geometry as Cl. Scanning is accomplished by tilting the

subreflector instead of the main reflector. Due to the substantial difference in size, tilting

the subreflector is much easier mechanically than tilting the main reflector. Electrically,

however, tilting the subreflector for wide-angle scan is not feasible because

(i) the subreflector must be tilted by a much larger angle a 2 in order for the beam

to scan. The approximate relation between the two angles is

eo-c_/M

where M=D .main/Dsub=magnification factor.

(ii) When the subreflector is tilted by a large angle, there is an excessive spillover

loss.

In this case M=8.7. The scan loss is quite high. At 00=1.*/5 °, the scan loss is 6.6 dB

(Fig. 4.18). At 00=3.32 °, the scan loss is 36.3 riB. This would seem to indicate that

tilting the subreflector is not a viable option for wide-angle scan.

4.2.3. C3: cassegrainian reflector with both reflectors tilted

Design C3 has the same geometry as C1 and C-'2. Scanning is accomplished by

tilting both the subreflector and the main reflector. The idea is to use the main reflector for

coarse scanning and the subreflector til_g for local scanning within a small angular region.

The scan angle 00,-2(al+a2/M). Given a I and 02, the scan loss can be obtained by

looking at the results for C1 and C2.
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4.3. Conclusions

We have studied the wide-angle scan ability of the six reflector antennas shown in

Figures 4.1 and 4.2. All reflectors have a circular diameter of 1,000 k and f/D=2, except

that P2 has a shorter focal length f/D---1. The scan loss is summarized in Figure 4.19.

Conclusions are listed below.

(i) For mechanical scan by tilting reflectors, the best system is Pl. The scan loss

at 00=80 (114 beamwidths) is only 0.6 dB (Figs. 4.5, 4.6). The sidelobe

level for the 00-80 position is increased considerably (from -31 dB to -13

dB). This problem, which may be alleviated by using the cluster

compensation method [25, 27, 29], should be studied.

(il) The folded version of Pl is the Cassegrain antenna C1. In the present study,

the feed is taken to be a single open-ended circular waveguide with a=3k. As

a consequence, the amount of folding achieved is small (the length reduction

is from 2,000 k to 1,650 k). If more folding is desired, a much larger feed

should be used.

('di) To shorten the f/D from 2 to 1, reflector P2 must rely on a cluster feed to

reduce its scan loss. The excitation of the cluster varies as the beam scans.

The scan performance of P2 is still not as good as that of Pl, indicating that a

19-clot cluster cannot totally compensate for the reduction in f/D.

(iv) Tdfing the subreflector of a Cassegrain antenna can only achieve a small scan

(about +15 BW). It can be used in conjunction with the electrically more

effective but mechanically more costly main reflector tilting to achieve a small

local scan.

(v) Among the six antennas, only the offset parabolic reflector P3 scans the beam

electronically. The price is high since (a) there are two identical antennas, one

to scan up and one to scan down, Co) the feed has 65,000 elements, and (c)



with a 19-element feed cluster, the scan loss at 00--80 is 6.3 dB. Without the

clustc'r, the loss is 15.4 dB. This is much worse than the 0.6 dB loss for P1.
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a. PI: Tilting Parabolic Reflector

l ....4a •

0,_2= ._t_
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b. P2: Same as PI Except f/D=l and Cluster Feed

,oio :.o.,.
I__'____""_Hexacjonal Cluster Feed

2o:Z.4X

c. P3: Off-set Parabolic Reflector With Electronic Scan

T
,o_o_

T I_ 2000),
IO_OX f ID = 2

_4-566X_

>65 k

Elements Total

2a =2.13),

Cluster Feed With

1,7, or 19 Elements

"On"at Any Time.

Figure 4.1. Single reflector antenna systems.



a. Ci: Tilting Main Reflector
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b. CZ" Tilting Subreflector
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C°

IOOO),

C3" Tilting Both Reflectors
Q

_\ f/D= 2

Figure 4.2. Casscgrain dual reflector antenna systems.
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Figure 4.3. Beam efficiency and antenna efficiency for P1 symmetrical parabolic reflector
as a function of feed raduis. The feed is an open-ended waveguide.

"cs

.m

*am
qms

t..

7O

60

5O

40-

Sym. Parabolic Reflector Untilted

30

2O P
-0.50

/
/

Dirl=66.7 dB

BW-'0.07 deg

sL=.31dBI

,̧
• o • • • • .

-0.25 0.00 0.25 0.50

Theta (deg)

Figure 4.4. P1 symmetric parabolic reflector far-field pattern for 0 ° scan.



57

Primary Feed Pattern

30 _ Reflector

0 5 10 15 2O

Theta (deg)
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C. tilted 10 °
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Figure 4.8. Relative excitations for the 19-element feed cluster in P2 symmetrical
parabolic reflector:, a. beam scanned 0 °, b. beam scanned 8 °, and c. beam
scanned 20 °.
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Hgurc 4.12. Relative feed excitations for the P3 off-set parabolic reflector.
a. Be,am unscanned, b. Be,am scanned 8 °.
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5. COMPUTATION AND OPTIMIZATION OF BEAM EFFICIENCY
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When a reflector antenna is used for a radiometer application, the important figure

of merit is its beam efficiency, not its directivity. In contrast to directivity, there are

virtually no published results on beam efficiency for a reflector antenna. Typical beam

efficiency curves exist only for idealized distribution over a circular aperture [31-33].

These are useful for general Izend prediction, but do not describe the dependence of the

exact reflector geometry and its feed.

In this chapter, several topics concerning computation and design aspects of beam

efficiency are addressed, namely,

(i) a discussion of three definitions of beam efficiency,

(fi) the numerical accuracy problem arising from pattern computation cedes based

on physical optics theory, and a method for overcoming this problem,

(Hi) typical beam efficiency data for parabolic reflectors with a circular horn feed,

(iv) optimization of beam efficiency by a cluster of feeds.

5.1. Thr_ Definitions

Beam efficiency is a measure of how well an antenna manages to transmit its power

within a prescribed narrow cone. It is defined as the percent of total radiated power

contained in the main beam

Pbem (5.I)

11= _ x 100%

where Pfoed is the power radiated from the feed of the reflector (not including the feed

mismatch loss). The unsettled question then is how the main beam is defined. Traditionally

the main beam is taken as an angular region within a circular cone with a half cone angle

O_m [31],[18], where



0bum= polaranglemeasuredfromthemainbeam (where 0=0 °) to the (5.2)

first null of the pattern.

The definition in (5.2) is sometimes difficult to apply. For a measured antenna pattern, the

first null is generally not symmetrically located in all cuts, and may not be clearly

iden "ttfiable. Hence, a more practical definition for the main beam is [18]

0beam = 2.5 X 03de (5.3a)

where

03_ = half beamwidth defined by 3 dB down points. (5.3b)

The second definition also has a drawback. While optimizing the beam efficiency of a

reflector antenna, it encourages excessive edge taper so that the 3dB beamwidth is very

wide. That leads to an antenna design with high beam efficiency but poor directivity and

poor aperture efficiency. This drawback is due to the fact that 03dg is a moving target,

which prevents a fair comparison between two patterns with different edge tapers.

In light of the above discussion, we propose a third definition, namely, the actual

half beamwidth 03dS in (5.3) is replaced by a nominal half beamwidth, which is a

prescribed number, not a moving target. For a given reflector diameter D, the nominal

beamwidth depends on how much one is willing to sacrifice the aperture efficiency for the

sake of improving beam efficiency. A good choice that conforms to current practice is
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03dB= (5.4)

This choice was arrived at by choosing an ideal aperture distribution with 20 dB edge taper.

This distribution (5.4) gives the correct location of the 3 dB down point. Therefore,

definitions 2 and 3 are the same for a reflector antenna having a 20 dB aperture taper. This

edge taper is chosen because it is a good compromise between low directivity loss (0.9 dB)

and high beam efficiency (98%, not counting spillover). If a reflector antenna does not

have a 20 clB edge taper, then def'mitions 2 and 3 can yield very different results.



Definition3,however,isbettersinceit doesnot leadto the use of patterns with excessively

wide beamwidths as definition 2 does.
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5.2. The Problem with Direct Computation

Given the secondary pattern of the reflector, a straightforward method to evaluate

power in the main beam, denoted by Ptmm, is to integrate the field over the main beam,

namely,

where Af_ is the half-cone solid angle. This works if the secondary pattern is known

accurately. To obtain a 2% accuracy in efficiency, the pattern near the main beam region

must be accurate within 0.086 dB. Such an accuracy is not attainable by standard pattern

computation methods, which are invariably based on the physical optics (PO) theory. The

reason can be traced to the fact that the PC) does not conserve power. The finiteness of the

energy condition is not obeyed by the scattered fields which result from the assumed

surface fields [34]. Technically, this means that the divergence theorem can not be used in

deriving integral representations for these fields. If we carried out the integral in (5.5) over

the entire 4x space, the power in the pattern generally does not match the power incident on

the reflector, which is feed radiated power minus the spillover. This is due to truncation of

the surface currents at the reflector edge. We shall use an example to illustrate our point.

Consider a center fed parabolic _Alector with

Reflector diameter = 2a = 100 _,

F/D =2.0

Feed: TEl I mode of a circular waveguide with diameter 1.8 _.

located at the focal point.

Edge taper - 10 dB

Spillover loss = 16% (-0.75 dB)



Its secondarypatterncalculatedby a PO code is shown in Fig. 5.1. We integrate this

pattern to calculate the power within a cone with half cone angle 0cone. The result is shown

in Fig. 5.2. Interpolating Fig. 5.2 conservatively out to 0 = 90 ° results in a total of less

than 96% power when spiUover loss is added in. This clearly indicates that the secondary

pattern is not entirely accurate and, therefore, power is not conserved. Unfortunately, there

does not seem to be a simple fix to make PO-based pattern codes more accurate (adding

fringe current does not solve the present accuracy problem). Since the error is caused by

truncation of surface currents at the reflector edge, the error is less for cases in which the

edge taper is higher. For the same reflector with a 2.4 _, radius feed (30 dB edge taper),

the sum of the radiated power and spillover power is 99%.

For the pattern in Fig. 5.1, let us compare the three definitions for the main beam:

0.86 using definition in (5.2)
Obey= 0.85 ° " (5.3a)

0.90° " (5.4)

which gives beam effieiencies, respectively, of 75.5%, 75.5%, and 75.6%. In general, the

difference in computed beam efficiency will not vary significantly (i.e., the difference in

efficiency is only a few percent) for values of 0beam calculated using the various

definitions, since the difference between the two solid cone angles is a thin ring located in

the neighborhood of a pattern null. When a much larger feed (3.0 k) is used, the respective

beam efficiencies from the three definitions are 90%, 90%, and 88%.

7O

5.3. Indirect Computation of Beam Efficiency

In order to achieve beam efficiency results more accurate than those in Section 5.2,

an indirect method of computation will be described here. The calculated secondary pattern

is calibrated by an ideal aperture diswibution, whose far-field pattern and power enclosed in

the far-field pattern can both be obtained via closed-form solutions. If the calculated



pattern'spowerenclosedgraph(e.g.,Fig. 5.2) is matched carefully to an ideal pattern,

then the resulting beam efficiency calculation should be more accurate than for the direct

computation raethod.

The following definition is used for calculating beam efficiency by the indirect

method. The beam efficiency T1is defined as

ll--'rlp_rlu=rlf_d (5.6)

where thevariouselementsaredefinedasfollows:

rl_t: The calculatedsecondarypatternisexamined forrelativeaccuracy. Causes

ofinaccuraciescould includeoverlysparseFFT gridsor othererrorscaused by numerical

integration.At thispoint,inaccuracydue tononconservationofpower by thePO method

isignored. Itisonly reallynecessaryfor the patternto be accurateover the firstfew

sidelobessincethatiswhere almostallof thepower inthe secondary patternislocated.

The cutoffpointforthe accurateregionisdenoted by 0w.c.Then thepatternefficiencyis

definedas

P(0b m)

_p_t = P(0_)
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where P(0)isthe power insidethecone half-angleO (Fig.5.3).

rI_¢¢:The exactdefinitionofTl_cis

P(0 )
_aac --Power in the actual pattern

(5.8)

Because of the nonpower conservation of the PO-based pattern code, it can be difficult to

calculate the power in the actual secondary pattern. Here, we propose an approximation.

An ideal closed-form solution for the far-field pattern is used.

amplitude distribution is assumed:

Q(O) = C + (I- C)[1 - (pla)2]P

The following aperture

(5.9)



where the parameter C isthe apertureedge taperin decibels(ET = 201ogC) and the

parameterP isused tochange theshape ofthetaper(Fig.5.4)[4].A similardistributionis

used in Equation 2 of [31]. If the feed blockage is negligible, then the far-field integration

over the aperture produces

T = _a2[CA1(kasinO)+ (1- C)Ap+t(kasinO)] (5.10)

where

_ . . J.(_)
A_(_)= 2"F(P+I)----- (5.1I)

C

The totalamount ofpower inthisfar-fieldpatterncan be easilydetermined.Note thatthe

patternisplottedversuskasine.For a given antenna,thereflectorradiusa isfixedand the

pattern truncates at kasin0 = ka [4]. This can then be converted into the cone half-angle

them. Then, the Tl_ defined in (5.8) is approximated by

_1_:- Vl_(ideal) (3.12)

vlree: The feed efficiency, TI_, is a measure of how much of the power radiated

from the feed hits the reflector(s). This term takes into account spillover loss. In some

previous works it is referred to as feed efficiency factor [31], which is a function of the

feed pattern and the angle subtended by the reflector dish [35]. For a multiple reflector

antenna system, Tlfeed would appear once for each reflector.

As an example of the indirect method described in (5.6), consider the following

case of a symmetric parabolic reflector with the following parameters:

Reflector diameter = 2a = 1,000 _.

Feed: TEl 1 mode of a circular waveguide with diameter 1.8 L located at the

focal point

Edge taper= I0 dB

Spillover loss = 18% (-0.85 dB)
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Itssecondarypatternisshown inFigure5.5.From thecalculatedpattern,we find0beam =

0.090° (using(5.4))and we choose 0a¢¢= 4.2°. This leadstoa patternefficiencyTlpat=

0.956 (Fig.5.6).Using theidealpatternwithp - 1.0and a 10 dB edge taperleadstoTI_¢

= 0.997. The feed efficiencyisTlfe_d= 0.822. The resultingbeam efficiencyis11= 78%.

On the otherhand, a direct(conventional)calculationusing (5.1)leadsto11" 76%. When

a 2.2_,radiusfeedisused,thecorrespondingefficienciesare 88% and 86%, respectively.

Therefore,as expected,thePO errorleadstotheefficiencybeing I-2% low. A limitation

of the indirectmethod isthatitcan only be used in symmetric situations,sincethe ideal

pattern is symmetric.
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5.4. Optimization of Beam Efficiency for Ouster Feeds

5.4.1. Use of cluster feeds

In some _q'lector applications a cluster feed consisting of multiple elements is used

instead of a single feed element. This cluster feed cart be used in two different ways:

• One-to one Excitation in which only one feed in the array is used to produce

one beam.

• Cluster Excitation in which a group of feeds (normally 7 to 50) is used to

produce one beam.

The cluster excitation method can produce a more desirable secondary pattern due to its

higher number of degrees of freedom. The complexity of the feed is also higher for the

cluster excitation method. The complexity is outweighed if sufficient improvement in the

results is obtained.

By properly setting the excitations of the cluster elements, it is possible to optimize

various performance parameters of the reflector antenna. In the past, this has been done for

optimizing the directivity for wide-angle scans [17,24,36], compensating reflector surface

distortion [17], reducing sidelobes [24,29,30], etc. In this section we apply the cluster



excitationto optimize the beam efficiency. This optimization is solved by means of a

matrix formulation similar to that employed in [36].

5.4.2. Matrix formulation

Consider a reflector antenna with N feed elements (Fig. 5.7). When element m is

excited with a unit amplitude (Jm = 1) while all outer elements are idle (Jn = 0 for n _ m),

the secondary pattern from the reflector is called the active element secondary pattern of

element m and is denoted by Era(r). In particular, we are interested in the reference

polarization of Era(r), namely,

Em(r)-R*ffi e-Y_'E_(O,_) kr -.>,00 (5.13)
r

Here, R and C are two unitary vectors describing the reference and cross polarizations. If

all of the feed elements are excited with weighted amplitudes {Jm }, the composite

secondary pattern is given by
N

Q(O.,) = _Jml_(O,(_)

m=l

The radiated power within the main beam of pattern Q(0,_) is

(5.14)

N N

ffiA________J:BmnJn = (J*)T B J

(5.15)

m=l n=l

where Zo ffi 120_ ohms, d.Q ffi sin0 dO d_ is the differential solid angle, and the

integration is over the main beam. The square matrix B has elements Bmn

where

Bran - --_ LmE_f(0,_)[Eref(0,_)]*d _
(5.16)

The power radiated by the feed cluster may be calculated by integrating over the primary

pattern of the feed cluster or by integrating the secondary pattern over all space. These two
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integrals are roughly but not exactly equal [35]. For the purpose of this thesis the integral

over the secondary pattern at infinity, which is more valid, is used. This power is given by

N N

* *T

mffil nffil
where

1

The ratio of (5.14)to(5.16)is

(5.18)

Pbeam (j*)T_ j (5.19)

Bcamcff.--Tl-- pf_ (j*)T_j

Itisnow desiredtofindtheJ that optimizes the beam efficiency.

5.4.3. Optimization of beam efficiency

Given Hermitian matrices A and B, we wish to maximize 71 in (5.19). It is well-

known that A can be diagonalized in the fashion

U-tAU = D (5.20)

where

U = a unitary matrix formed by U I ,U 2 ..... UN],

a n ,Un = an eigenvalueand itscorrespondingeigenvcctorof A,

D = diagonalmatrixwithdiagonalelementsdnn = an .

Substitute

--- 0A=( c)Tc, whereC (5.21)

=*T = -I
where use is made of the fact that U = U Introduce a new unknown K in terms of

the unknown J,



1
_'_ =-I

KffiCJ=D U J. (5.22)

Then (5.19) can be written as

K *T F K

K *T K

(5.23)

where

i 1

(5.24)

Equation (5.22) is the Raleigh quotient in the man-ix theory [37]. The maximum value of 11

is

= _,_, (5.25a)

which occurs when

K = Vmax. (5.25b)

Here, _ is the maximum eigenvalue of F, and Vmaxis the corresponding eigenvector.

From the relation

F Vmax ffi_LmaxVmax (5.26)

and (5.23),itcan be shown that

A B Wmx = ZmaxWm_
where

(5.27)

1
---- -- 2

W max" U D Vmax (5.28)

Next thesolutionof J thatmaximizes11isdesired.From (5.21),(5.24),and (5.27),we

obtain
= =*T

J = U U Wm_ = Wmax (5.29)

In conclusion, given a feed element cluster with a known geometry, the maximum

achievable beam efficiency 11is obtained by using the element excitations (within a scaling

constant) contained in J in (5.28), which depends on the element pattern matrices in

(5.16) and (5.18).
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5.5. Results and Discussion

5.5.1. Power as a function of sidelobes

It is of interest to know what percentage of power is located inside a certain number

of sidelobes. For example, if 99% of the far-field power is within the first three sidelobes

for a given far-field pattern, then the integral over the secondary pattern to determine this

power need only cover the solid angle covering the first three or four sidelobes. For the

ideal pattern described in Section 5.3, the integral is closed form (5.9) and the enclosed

power can be readily found. The power inside the first, second, and third nulls as a

function of the aperture edge taper is shown in Figure 5.8. This indicates that for patterns

with high edge tapers, the total radiated far-field power can be approximated by integrating

over the cone containing the main beam and first three sidelobes.

5.5.2. Efficiency of reflector antennas

The results in Figure 5.8 for the ideal aperture distribution do not show the

dependence on antenna geometry and feed pattern. In order to study the efficiency of a

reflector antenna, the actual pattern must be used instead of the idealized pattern in (5.10).

It is interesting to observe that, for a reflector antenna, high efficiency is achieved by severe

"underillumination." By underillumination, we mean that both the main beam and part of

the first sidelobe of the feed pattern are intercepted by the main reflector. This point will be

explained further in Section 5.5.3.

5.5.3. Dependence of beam efficiency on feed size

Consider a parabolic reflector fed by a single circular waveguide with the following



78

Reflector diameter = D = 1,000

f/D ratio: f/D = 1.0 and f/D = 0.4

Feed: TEll mode of a circular waveguide with diameter 2a at the focal

point

We consider the cases:

Case 1: Symmetric reflector

Case 2: Offset reflector (lower edge of reflector is on the parabolic axis)

The variation of beam efficiency with respect to feed radius is shown in Figure 5.9a for the

symmetric case and in Figure 5.9b for the offset case. The corresponding results for

directivity are shown in Figures 5.10a and 5.10b, and for edge taper in Figures 5.11a and

5.1 lb. It is interesting to note that

1. Optimum efficiency and optimum directivity do not coincide.

2. Near optimum efficiency occurs for edge tapers > 20 dB but optimum efficiency

occurs when the reflector is slightly "underinuminated" (i.e., the fh'st null

hits the reflector near its edge).

Optimum directivity occurs for a 12-15 dB edge taper.

5.5.4. Scanned beam

A single synuneuic reflector with a single circular waveguide feed is used. The f/D

ratio is 2.

Reflector diameter = D -- 1,000 _.

Feed: TEll mode of a circular wavegulde located at the focal point.

Two feed radii are examined. The information for them is given in Table 5.1.

Table 5.1. Information for scanned reflector antennas

l_alus _) Edge taper (dB) 0b_ (2) 0b_m (4) Spillover loss (dB)

1.8 10 0.35 ° 0.36 ° -0.85

2.2 20 0.36 ° 0.36 ° -0.44
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Scanning is accomplished by tilting the reflector. When the reflector is tilted by (z°, the

beam is scanned by angle O_,aa " 2cx (Fig. 5.12). This is known as the mirror effect and it

more than doubles the maximum scanning ability of an antenna when compared to that of

the usual method of shifting the feed and keeping the reflector fixed. The results are shown

in Figure 5.13.

An f/D ratio of 2 is very large but large f/D ratios conlribute to much better scanning

results. As an example of this, a comparison of beam efficiencies is made between the

2.2 7t case above and a third case. This case uses a 1,000 k reflector with f/D = 0.4. A

feed radius = 0.7 k is used to maximize the on-axis beam efficiency. The nominal half-

cone angle is 0bum = 0-36 ° (5.4) and the first null is at 0t_ma = 0.44 ° (5.2). The spiUover

loss is very low (-0.16 dB) and results in a very high on-axis beam efficiency of 94.7%.

However, even for small scans, the antenna with the higher f/D ratio has a much higher

beam efficiency (Fig. 5.14).

5.5.5. Cluster feed

A single symmetric reflector is used. The f/D ratio is 0.4.

Reflector diameter = 2a -- 1,000 _,

Feed: Seven-element hexagonal cluster of circular waveguides excited by

the TEl 1 mode. The feed radius is 0.7 _ Cluster is centered at the

focal point. Element spacing is 1.42 k.

Spillover loss = .0.16 dB (on-axis with only the center element lit)

The excitations of the feed elements are chosen as above to maximize beam efficiency. In

Figure 5.15, results for scanning by an optimized seven-element hexagonal cluster feed

(ring of six elements surrounding one element) are compared to those for an antenna with a

single element of the same type as those used in the cluster feed. The feed element size is

chosen so that beam efficiency is optimized for a single element in the tmscanned case. For

this reason, at small scan angles the optimal result comes from using very small excitations



8O

on the outer elements; as a result, the improvement is small. The improvement due to using

the more complex cluster feed is more evident for wider scans. In this case, the efficiency

improved by over 10% for some scan angles.
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Figure 5.9a. Variation of beam efficiency (using definition in (5.4)) with feed radius for a

symmetrical antenna with various f/Ds. The feed is an open-ended circular
waveguide.
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6. USE OF FREQUENCY SELECTIVE SURFACES
REFLECTOR ANTENNA DESIGN

IN

99

Frequency selective surfaces (FSS) are very valuable for the design of multiband

reflector antennas. In a standard antenna design, it is desired to place the phase center of

the feed at the focal point of the main reflector. However, in multiband applications it is

often necessary to use more than one feed. In this case the feeds must be kept physically

separate. This can be achieved by placing one or more of the feeds at an image point of the

focal point. This is often done in dual reflector configurations, such as cassegrainian or

gregorian. In a cassegrainian configuration, the subreflector is located between the main

reflector and its focal point (Pig. 6.1). An additional feed could be placed at the focal point

of the main reflector, but its energy would be blocked by the subreflector. This problem is

avoided if the subreflector is transparent to the energy emitted behind it, but reflects the

energy emitted from the cassegrainian feed. This effect can be achieved with use of an

FSS. In this chapter, the use of FSS in the design of the ATDRSS triband reflector

antenna is examined.

6.1. The ATDRSS Project

NASA's Tracking and Data Relay Satellite System (TDRSS) presently provides a

vital link in space communications. The TDRSS sateUites substantially increase earth-to-

space link availability and provide a near continuous exchange of information. A single

TDRSS satellite can wansmit and receive high-data-rate information to and from low earth

orbiting spacecraft via two single access (SA) reflector antennas. These steerable SA

antennas can provide simultaneous S-band and Ku-band communications with one

spacecraft at a time. Communications to and from orbiting spacecraft can also be

accomplished via an S-band multiple access phased array antenna, though at much lower

data rates. A separate space-to-ground link antenna operating at Ku-band provides



communicationsbetweenaTDRSSsatelliteandtheTDRSSWhiteSandsGround Terminal

in New Mexico.

In order to provide additional bandwidth for increased communications demand, the

advanced TDRSS, or ATDRSS, project has been proposed and is scheduled for launch in

1997. As conceived, the ATDRSS satellites will incorporate Ka-band capability in the SA

reflector antennas, in addition to the S-band and Ku-band services. Therefore, in order to

meet these future requirements, the development of a triband reflector antenna for ATDRSS

is critical.
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6.2. Design

There are two approaches to designing a u-iband reflector antenna. Both approaches

use a single-band feed for S-band and isolate the S-band from the other two bands by

means of a frequency selective surface (FSS). In the f_rst approach a multiband feed

(usually a corrugated horn) is used. In the second approach two single-band feeds are used

which are isolated from each other by means of a second FSS. Both approaches have

pluses and minuses. The multiband feed is more compact and avoids additional FSS losses

[38-40]. However, design of a multiband feed is much mere difficult than that of a single-

band feed. It is more difficult to optimize parameters such as feed size and taper.

Performance will further degrade if the phase centers of the two bands do not coincide. In

contrast, the horn design for the second approach is much easier and feed losses will be

lower. The design will not be as compact since there is an extra feed and FSS. The

challenge is in designing a low-loss FSS. The task is made more challenging by the

relatively small separation (about 2:1) between the Ka-band and Ku-band. FSSs are today

typically used to discriminate between bands with a 6:1 ratio (for example between S-band

and Ku-band).

In this thesis, we have chosen the second approach, in which three separate feeds

are used. It is felt that the improvement in feed performance will not be offset by the higher



FSSlosses. It is also easier to analyze the feed system in the second approach since the

design of the multiband feed is to some extent a hardware design problem. Each feed is

optimized for a single band and the feeds are isolated by means of frequency selective

surfaces (FSS). The FSS will transmit certain frequencies while rdlecting others. Two

rdlector antenna configurations are presented below, an offset single reflector (Figs. 6.2,

6.3) and a symmetric shaped dual reflector (Figs. 6.4, 6.5). The advantages of each

design are presented in Table 6.1.
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Main reflector

parabolic, offset

Fig. 6.1

shaped, symmetrical

Fig. 6.3

Table 6.1. D_sit:n summar_

FSS

2 planar planar FSS only

1 planar and

1 curved

Advantages

smaller diameter main reflector (12.5 ft.)

solid reflector, not mesh

smaller volume (shorter focal length)

similar to existing TDRSS desi[n

6.2.1. FSS design

Planar FSSs have an advantage in that they can be theoretically analyzed by

methods such as Floquet modes. Curved FSSs must be analyzed as being locally flat. The

initial design is then tested to observe the perturbation caused by the curvature. Several

iterations are then usually necessary to completely compensate for the effects of the

ourvanlre.

FSS designs have been developed that will provide the necessary u'ansmission and

reflection characteristics. The FSSs use ring elements, due to the circular polarization of

the radiated field. A total of four FSSs were designed. FSS1 and FSS2 are used in the



offset configuration. FSS3 and FSS4 are used in the symmetric configuration.

breakdown of the requirements for each surface is shown in Table 6.2.

A
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FSS S-band

1 U_mit

2 transmit

3 u'ansmit

4 -_

Table 6.2. FSS requirements

Ku-band

.N

reflect

reflect

u'ansmit

Ka-band

reflect

transmit

reflect

FSS3 is the only curved surface, being the subreflector of the dual cassegrainian design.

Using these designs, far-field patterns have been computed for the above antenna systems,

including losses due to the FSS effects.

6.2.2. Offset reflector

The offset configuration uses a reflector with a diameter of 150", a focal length of

130", and an offset height of 15". Both FSSs are planar. FSS1 is farther from the

reflector and is orientated vertically (Fig. 6.3). This surface uses Arlon DI_880 that is

15 mil thick and has a dielectric constant _ -- 2.17 - j0.0017. The lattice angle is 60 ° (as it is

for all four FSSs); the dimensions for the ring elements are shown in Figure 6.4. FSS2 is

lilted 5 ° from vertical The substrate is Arlon DICLAD880 but the thickness is 30 raiL The

dimensions of the ring elements are shown in Figure 6.5. All feeds are assumed to be

corrugated circular horns. The S-band feed has D -- 10" (1.8 _. at 2.2 GHz), the Ku-band

has D = 1.6" (2.0 _. at 14.9 GHz), and the Ka-band feed has D - 0.94" (2.0 _. at 25.25

GHz).



6.2.3. Symmetricreflector

The symmeuic configuration uses a casscgrainian subreflector. The main reflector

has D = 168" and a hole at the vertex 28" in diameter. The subreflector has D = 28". The

subreflector is shaped to avoid sending energy into the hole in the main reflector. The main

reflector is shaped to avoid energy blockage by the subreflector (Fig. 6.6). This shaping is

subtle and at S-band frequencies the main reflector and sutneflector appear to be parabolic

and hyperbolic in shape respectively. The Ku-band and Ka-band feed structures are

inside the shadow cast by the subreflector on the main reflector so that feed blockage losses

will be minimal (Fig. 6.7). The S-band feed is located at the focal point of the main

reflector. At S-band the main reflector can be considered to be parabolic because the

deviation due to shaping is only a fraction of a wavelength. This feed is a crossed dipole

with 4.4" diameter subreflector. The Ku-band and Ka-band feeds are corrugated circular

horns that are 3.6" and 1.88" in diameter, respectively. These feeds are significantly larger

than the corresponding feeds for the symmetrical case. The offset design has f/D - 0.87.

For the dual reflector design, the distance from the feeds to the subreflector is about 1.5

times the diameter of the subreflector. Therefore, the Ku-band and Ka-band feeds for the

dual design need to be more directive to maintain spillover losses comparable to those for

the offset design. The subreflector is FSS3, transmitting at S-band and reflecting at the

higher frequency bands. The substrate is Arlon DICLAD810 with dielectric constant _ =

10.5 - j0.0158 and thickness 14 mil. The dimensions of the periodic element are shown in

Figure 6.8. FSS4 is tilted 35 ° from vertical. The subtrate is Arlon DICLAD880 with a

thickness of 200 mil. There are two layers with the rings facing inward towards each

other. The separation between the layers is 84 mil and is also filled with DICLAD880.

The dimensions of the ring elements are shown in Figure 6.9.

6.2.4. Comparison of reflector size

Most Phase A designs for ATDRSS have proposed 16' diameter mesh main

reflectors [41,42]. The large diameter compensates for blockage, feed losses, and RMS
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errors which are higher for a mesh surface than for a solid surface. By combining high

feed efficiency and a shaped reflector to lower blockage losses, the size of the reflector is

reduced to 14' for our symmetric design. For the offset case, there is no blockage. An

assumption of a solid surface reduces RMS surface losses. In this case a diameter of 12.5'

is achievable while meeting link budget requirements. If the solid reflector is hinged to

allow folding, then it is possible to fit a solid reflector of this size on the launch vehicle

(Space Shuttle or Atlas-Centaur).

I04

6.3. Results

A physical optics-based model for an open-ended circular wavegnide is used as the

feed. Physical optics is used to calculate the field incident on the reflector (or main refiector

in the case of the dual reflector design). An FFT is then used to calculate the far-field

patler_

It is impommt to integrate the effects of the FSS into the refiector analysis, because

the transmission and reflection coefficients of the FSS are a function of the incident angle

of the radiation. The theta and phi components of the incident field interact differently with

the FSS. Therefore, the incident wave must be broken down into its theta and phi

components as defined in the FSS coordinate system. The local z-axis is chosen as being

the normal to the surface at the point of intersection, and directed into the same half-plane

as the global z-axis (Fig. 6.10). The refiected and transmitted fields are then related to the

incident field via a matrix formulation.

[H I ]
IH']Irl IIH']Hi'

(6.1)



In the case of a transparent surface for transmission and a perfect electrical conductor (pec)

surface for reflection, (6.1) reduces to

Ho]E oI[ ]H,*

o H° ]H°IIo111[and [
(6.2)

In the reflector system the energy spreads out as it leaves the feed, Therefore, it is

incident on the FSS over a wide range of incident angles (Fig. 6.11). For example, in the

offset configuration the energy from the Ka-band feed is incident on FSS1 at a range of

incident angles of 6.6 ° < 0 < 64.8 °. The strength of the field also varies as a function of the

angle from the feed axis. In addition, the losses due to phase shifting by the FSS must also

be considered. These factors can not be adequately accounted for unless the FSS effects

are integrated into the reflector system. In general, the FSS losses are less than 1 dB and

are usually on the order of a few tenths of a dB. The most noticeable effect is reduction of

the null in the cross-pol at boresight. However, in all cases the cross-pol is at least 20 dB

below the ref-pol. The results for the two configurations are shown in Table 6.3. The

FSS losses are shown in parentheses. TRW's estimated link budget requirements [43] are

also shown for comparison.
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Band Freq. (GHz)

S 2.2

Ku 13.7

Ku 14.9

Ka 25.25

Ka 27.5

Table 6.3. Directivity results

Offset dir. (dB)

37.2 (0.1)

54.0 (0.1)

58.7 (0.1)

58.8 (0.6)

Symmetric dir. (dB)

37.7 (0.1)

54.6 (0.6)

55.4 (0.5)

60.2 (0.4)

60.3 (1.0)

Required (TRW est.) (dB)

36.0

51.0

51.0

54.0

54.0
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The2.2 GHz, 14.9 GHz, and 25.25 GHz frequencies are the center frequencies

(the lower edge of the receive band) for the S, Ku and Ka bands, respectively. Results

were computed for two additional frequencies where FSS losses were a maximum. For

both designs, at the upper edge of the Ka band (27.5 GHz), increased FSS losses almost

completely negated the increase in directivity resulting from using the same-size reflector at

a higher frequency. For the symmetric design, FSS losses in the Ku band were highest at

the lower band edge (13.7 GHz). In all other cases, the FSS losses at the band edges were

lower than or roughly equal to losses at the center frequency. At every frequency, the

offset design has lower directivity than the symmetric design, despite having lower FSS

losses. This is due to the fact that the offset design uses a smaller reflector.

It should be noted that Table 6.3 does not give the complete picture. The computed

directivities shown include spillover/'dlumination losses, blockage losses, and FSS losses.

They do not include reflector surface losses, radome losses, feed losses, and feed line run

losses. These losses are taken from published Phase A results [41-43]. When these

additional losses are added, all link budget requirements are still satisfied. The gain margin

(over TRW's Phase A report specifications [43]) is shown in Table 6.4. The margin is

Table 6.4. Antenna lain mar i

Band

S

Ku

Ka

Freq. (GHz)

2.2

13.7

27.5

an over TRW specifications

Gain Margin (dB)
Offset

0.7

2.3

3.3

S_.rnetric

0.8

2.3

2.9

computed in each band for the frequency at which the margin is a minimum. This is 2.2

GHz for S-band and 27.5 GHz for the Ka-band. The actual Ka-band margin is actually



slightly lower, since the TRW Ka-band specification is for 25.25 GHz, not 27.5 GHz.

For the Ku-band, the margin is computed at 14.9 GHz for the offset design and at 13.7

GHz for the symmetric design.
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6.4. Physical Layout

The offset fed single reflector antenna configuration has been selected for

integration into proposed ATDRSS designs. The offset design uses a solid reflector and

planar FSSs, which can bc accurately modeled by existing computer programs using modal

analysis. The offset fed single access antenna geometry shown in Figure 6.2 has been

adapted for a conceptual spacecraft design. Sornc of the assumptions for this design arc (a)

an Atlas Centaur launch vehicle, (b) an Advanced Communications Technology Satellite

(ACTS) size spacecraft body and ACTS type solar arrays and (c) the S-band amplifier can

bc located in the spacecraft body and the Ku- and Ka-band equipment can be located in the

antenna arms near the feed horns.

CADAM drawings have been completed for the design concept and a 1/13th scale

model has been constructed, employing this offset-fed antenna configuration. Figure 6.12

is a photograph of the spacecraft model in the launch ready state. Figure 6.13 shows the

spacecraft model with both offset fed antennas fully deployed and pointed north and south.

This configuration allows for a full 360 ° offset antenna scanning capability. Lunar access,

which has been recently added to the ATDRSS mission, is achievable with this

configuration.
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Main reflector

Focal point

Figure 6.1. Cassegrain antenna. The focal point of the parabolic main reflector coincides
with a focal point of the hyperbolic subreflector.
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Figure 6.2. Offset design for proposed ATDRSS triband reflector antenna. The single
reflector dish is parabolic and has a solid surface. The reflector is 150" in
diameter with an offset height of 15" and a focal length of 130".
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Theta=35.7 °

_ __

Theta=6.6 °

-40" -30"

Theta=64.8_

Ku band

Offset Feed
30"

FSS-1 20"

5f tilt)

10"

i k S band hom

_ o.
Ka band

horn "l

/
_1 O _

-20" -10" O" 10"

Figure 6.3. Close-up of offset design feed system. All three feeds are corrugated horns.
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_4mil

23 rail

63 rnil

102 mil

218 mil

Figure 6.4. Geometry for FSS 1.



4mil

112

57 rail

119 mil

Figure 6.5. Geometry for FSS2.

Ku S

Ka

Figure 6.6. Dual symmetric design. The reflector is shaped and has a diameter=168".
The subreflector has diameter=28".
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1!
...........}Ku band hom

Symmetric Feed

Ka
horn

Theta=17 °

FSS-3

b

S

band

feed
. .

p

0" 10" 20" 30" 40" 50" 60"

Figure 6.7. Close-up of the symmetric design feed system. The S-band feed is a crossed
dipole with reflector, aad the other feeds are corrugated circular horns.
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40mil

84mil

Figure 6.8. Geometry for FSS3.

54 rail

113 rail

Figure 6.9. Geometry for FSS4.
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0

er i

Zlocal

Figure 6.10. Interaction of wave with a surface. In general the surface may be curved.
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Omin

Figure 6.11. Since the fem:l does not emit a plaa¢ wave, the energy radiated is incident on
a surface over a broad range of incident angles.
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NASA

C-91-0_6_

1/13 Scale Model of Advanced Tracking and Data Relay
Satellite (ATDRS) Concept Stowed for Launch

2.2m K-band

downllnk antenna

stowed for launch --_

A" 3.8m S, Ka and Ku-band single access
/ \ antennas folded and stowed for launch

I \
\

/- S-band multi-
/ access phased

// array antenna
/

/
I

/

CD.gl 4sOO:l

Figure 6.12. Model of proposed ATDRSS satellite showing the launch-ready
configuration (photo courtesy of NASA).
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C-91-0k633

1/13 Scale Model of Advanced Tracking and Data Relay

Satellite (ATDRS) Concept Configured for Lunar and

Out of Ecliptic Plane Missions

• ,'" )'_ S, K: and Ku-band single access antenna i

..-- .+", . .... /--!) pointed forward out of ecliptic plane sateilite_

/
--. _barKI multi-access

I phased array antenna
I
I

I

-_

N...-

\_ 2.2m K-band

downlink antenna

S, K a and K,, -band

single access antenna

pointed toward lunar

orbiting satellite

CO-|141N_1

Figure 6.13. Model of proposed ATDRSS sateUit¢ showing the triband reflector antennas
in the fully deployed mode (photo courtesy of NASA).



7. CONCLUSIONS

We haveexpandedexistingmethodsof calculatingfar-fieldpatternsfor reflector

antennas to include many of the difficulties presently encountered in reflector antenna

design and analysis. By using methods of analysis that are generalized and allow for more

variation, the scope of problem types that may be tackled is broadened. The purpose is to

develop methods of analysis flexible enough to handle tomorrow's problems as well as

today's. Using these techniques, problems such as spillover loss for reflector antenna

wavegulde feeds, optimization of beam efficiency for reflector antennas, and the analysis of

reflector antenna systems including frequency selective surfaces have been addressed.
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Abstract

A frequency selective surface (FSS) with concentric metal ring elements are analyzed by

a mode matching technique. The currents on the metal rings are represented by modal functions

of a coaxial waveguide. Both the circumferential and radial field variations are accounted for.

As a result, the present analysis applies to thin as well as thick rings.

Several FSS configurations are designed for the ATDRSS application, which requires the

separation of three frequency bands: S, Ku, and Ka bands. A typical configuration consists of a

thin layer of periodic concentric metal tings printed on a 10 to 20 mil substrate. The substrate is

supported by a three-layer honeycomb structure for mechanical strength. All five layers are used

in the present analysis. Our calculated results are in good agreement with measurements.

Conclusions about using FSS for the ATDRSS and similar projects are given below.

(i) Among various FSS elements (dipole, tripole, cross, rectangular or circular aperture),

the circular ring element stands out as the best in terms of control of pass-stop bands, and

stability with respect to incident angle/polarization. Another advantage of rings is that rings of

different radii can be concentrically arranged for multi-band operations.

(ii) A theory and a computer code 'cring.f have been developed under the present project.

The code can be used to analyze, design, and optimize ring FSS. A dozen of good FSS designs

generated by cring.f are given. Some of them have been verified experimentally. Those designs

can serve as templates for future applications.

(iii) FSS designed for Ka-band operation requires very stringent tolerances, namely, the

geometrical dimension be accurate within 1 mil, and the dielectric constant be precise and

homogeneous within 5%. If those tolerances are not met, FSS performance deterioted rapidly.

(iv) Because of the tolerance problem, FSS in the Ka-band can be built with confidence

only in a planar form, but not in a doubly curved form that is required for a symmetrical

reflector antenna. As a result, the use of FSS in an ATDRSS-type reflector a is restricted to off-

set configurations. Of course, the tolerance problem will be eased as mechanical and material
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controlsimprove. Futureuseof FSSin aATDRSStypesystem,evenfor acurvedsub-reflector,

is promising.

This report consistsof threeparts. The first two areview graphicsusedin theproject

review meetingsin JanuaryandOctober,1992. Thelastonecontainsthe mathematicalanalysis

of theFSSwith thick ring width.
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Analysis of frequency selective surface (FSS) is rapidly becoming a mature subject in the

electromagnetic theory [1-2]. Invariably, FSS is modeled by an infinitely large periodic

structure. The reflected and transmitted fields in space are represented by discrete Floquet

modes. The analysis problem then becomes the determination of the Floquet modal coefficients

by matrix equations.

There are many different metal elements can be used and have been used to form a periodic

FSS. Examples are rectangular plate, circular plate, cross, Jerusalem cross, dipole, tri-pole,

rectangular rings, and circular rings. In the past years, the circular ring element has emerged as

the best element for applications because of its

* good pass band and good band characteristics,

* relatively stable performance with respect to incident angles and polarization, and

* concentric ring configuration that allows multiple band operation.

In the last year project, we used the ring elements to design a set of four FSS for the ATDRSS

application [3]. That design was done with a computer code named 'ring.f'.

In ring.f computer code, there are two assumptions on the structure of the FSS. First, the

width of the metal rings are assumed thin in terms of electrical wavelength. As a result, the

current on the ring has no radial component and no radial variation [4]. The second assumption

is that the metal ring sheet is rested on a single dielectric substrate.

Both assumptions turn out too restrictive for the ATDRSS application. To order to better

control FSS performance, it is necessary to use rings with wide width, say 0.4 wavelength width.

Furthermore, in actual reflector application, FSS is glued to a supporting honeycomb structure.

It has been found by a study a NASA Lewis that support structure has profound effect on the

FSS performance, and it must be taken into consideration in the analysis.

A new computer code named 'cring.f is developed in the current project. The current on

the metal rings are represented by the coaxial waveguide modes, which have both circumferential
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as well as radial variation and field components. In cring.f, there is no restriction on the number

of substrate layers. Thus it can be used to model the composite structure of FSS and its

honeycomb support. A description of the analysis that cring.f is based on is presented in this

report. New designs for ATDRSS application are given in [5].

Reference

[1] C.C. Chen, "Scattering by a two-dimensional periodic array of conducting plates", IEEE

Trans. Antennas Propagat., Vol. AP-18, pp.660-665, 1970.

[2] S.W. Lee, " Scattering by dielectric loaded screen", IEEE Trans. Antennas Propagat.,

Vol. AP-19, pp.656-665, 1971.

[3] E.A. Parker and J. C. Vardaxoglou, " Influence of single and multiple-layer dielectric

substrates on the band spacing available from a concentric ring frequency selective

surface", International Journal of Electronics, Vol.61, pp.291-297, 1986.

[4] M.L.Zimmerman and S.W.Lee, "Integrated reflector antenna design and analysis", EM

Lab. Rept MZ1-91, University of Illinois, Urbana, IL 61801, July 1991.

[5] S.W.Lee, M. Christensen and Sean Ni, " Multi-ring FSS analysis using coaxial waveguide

modes", EM Lab. Rept GF92-2, University of Illinois, Urbana, IL 61801, October 5 1992 (

this report is included in this volume).



157

Chapter 1. Mathematical Analysis of FSS

In this chapter, the formulations for calculating the transmission and reflection from an

infinitely large periodic frequency selective surface (FSS) are derived. The FSS is made of

capacitive multiple metal rings. The computer code used in the later chapters is based on the

formulations presented in this chapter.

1.1. Field Representation

The geometry of the rings is shown in Figure 1.1. In the mathematical analysis, let us

assume that the metal ring is not perfectly conducting, but with a finite surface resistivity R c

(e.g., Re -- 100 ohm per square). In the current version of the code, Rc is set to zero. As will be

shown in the analysis, the addition of finite Rc is a relatively minor step. We can add the finite

R c capability to "cring" with a small effort.

The configuration in Figure 1.1 is horizontally stratified. A typical region defined by z I < z

< z2, the field is derived from two potentials

TE: E = - V x (_). (1.1.1)

_ 1 _2_

E x =_ _ Hx -jkoZoB

_W 1 _2W
Ey=_- ny - jkoZo_

Ez=O l a2+ k_)VHz- jko_. (_

1

TM: H = T_0 V x (_) (1.1.2)

1 a2_ 1 a_
Ex - _ Hx =T_.O_-

jkoE
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I _)2_ -I _)_

Ey -jkoE _7 _ Hy = _ _--x-

Ez - l _2 2 '
jkoE(_z2 + k_w_)V_ Hz=O

where k 0 = t,0(l.tOEO) 1/2, Z 0 = (itO/£0) 1/2, and (e, It) are the relative dielectric constant,

permeability in the region of interest.

b

Periodic Cells Region 5

a 20
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I
I
I
I
I

_x '

2

LA-- 1

max 4 concentric metal rings_r/ V'///qLB= 6 1//

A unit cell:

(
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b

7

I
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I
I
I
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Region 26

Each layer: (_, E, _t, R)
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SIDE VIEW

Figure 1.1. A resistive FSS illuminated by an incident plane wave.

X

)



159

MODE MATCHING FOR PERFECT CONDUCTING SCREEN

t

Inductive Capacitive

E t (0-) = E t (0+), El + E2

....... °.° .......... •

Same

...)

E t (0) , El
E t (0-) =

0 , E2

H t(O-)= H t(O+) , El

f .-.I,

"* Js(0) , _1
J s (outside) =

0 , E2

Eta n (0-) = 0 , El

Figure 1.2. Mode matching equations for a perfectly conducting screen.
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MODE MATCHING FOR RESISTIVE SCREEN

Inductive Capacitive

..................... .

E t (0-) = E t (0+), El + E2

Et (0-) = E t (0) , _1

Rc Js (outside) , E2

Hta n(O-)= Hta n(O) , ]El

Same

X2

...¢

]*s (outside) = J s (0) , 5.1

0 , 5.2

E t (0-) = Rc Js (0) , E 1

Figure 1.3. Mode matching equations for a resistive screen.
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Dueto theperiodicnatureof theproblem,thetotal fields in all regions,exceptin theresistive

layer,canbe representedby Floquetspaceharmonics.Explicitly, theyaregivenby

Transmittedregion

V = EE TpqQpq (x, y) exp(-j_r_ z)
pq

(1.1.3a)

Dielectric layers

= ]_ Qpq (x, y)[A_ exp(-j_pq ) z)+ B_ exp(+j_p_ z)]
pq

(1.1.3b)

Incident region

exp(-.W(pq z) + Rpq exp(+jypq z)]_1/= _pq_ Qpq (x, y) [Ipq • 26) - .(26)
(1.1.3c)

Here the summation indices (p, q) take the values

p,q=0,+ 1,+2, ...

The factor Qpq describes the transverse variation of the (p, q)th space harmonics:

where

Qpq (x, y) = exp[-j(UpoX + Xpqy)]

Upo = (2prda) + k 0 _ I.t26E26 sin 0 0 cos t_0

(1.1.5)

(1.1.6)

Vpq = (-2prda tan f_) + (2qrdb) + k 0 "fl-_226e26 sin 0 0 cos t_o (1.1.7)

The propagation constants in (2.3) are defined by

+V q)]'':,= n= 1,2 ..... 10 (1.1.8a)



162

where the square roots are taken such that

Re y(pq)_>0, Im ),(p_ < 0 (1.1.8b)

For given incident field (Ipq, ]'lXl), the unknown modal coefficients {Tpq, A_ ..... Rpq} are to

be determined. In addition to the TE modes described in (1.1.3), TM modes exist in the

various other regions. They are derivable from _ in accordance with (1.1.2). We represent

in the same manner as in (1.1.3) except that the constants {Tlx i, A_ ..... Rpq} are

replaced by {_'pq, A_ ), ..., Rpq}.

1.2. Fields at the Interface

We use the same field representations given in Section 2, 79-Rept. The tangential fields just

below the R-sheet are (Appendix C)

Et(z= 0-) = _'.j Wpq Qpq (x,y) {(_pq [(P_ + p(p3q))Ipq+ (9(122)+ p(4pq))Rpq]
pq

(1.2.1)

Ht(z = 0- )= ]_]_jWpq Qpq (x,y){ (_p6q)/koZo_6)_pq [(D_ - ppq.(3))Ipq
pq

where

^ -1 ^ __ AOtpq = wlx ! (R Vpq - y Upo) = x I]pq

(1.2.2)

(1.2.3a)

_lpq = w_! (R Upo + _ Vpq) = _ x _pq (1.2.3b)
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2Wpq = u + Vpq (1.2.3c)

Cpq = tan-l (Vpq/Upo) (1.2.3d)

p=0,±l,±2 ..... ±P (1.2.4a)

q=0,±l,±2 ..... ±Q (1.2.4b)

From (1.2.4) we note that the total number of Floquet space harmonics used in our computation is

NF= 2 (2P+ 1) (2Q + 1) (1.2.4c)

The tangential fields just above the R-sheet are

Et(z = 0+) = X]_j Wpq Qpq (x, y) { _Ztpq(p_ + p(6pq)) Tpq
pq

q)&'_l) ^ (1.2.5)

l'It(z = 0+) = XY_j Wpq Qpq (x, y) { ('_p_/k0Z0_l) gpq (p(Spq)_ p_) Tpq
Pq

(1.2.6)

Next, let us consider the representation of the unknown surface current on the resistive _1.

Note that, regardless of the value of R c, the current Js satisfies the same boundary condition that

Normal component of Js = 0 (1.2.7)
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attherim of thecircularplate. In thespecialcasein whichRc = 0 (perfectlyconductingplate),

•Is isgivenby thewell-knownexpression

where

2
Js(z=0) =_--f_ X Ein d (z=0)

,'--LI

Ein d (z = 0) = Tangential electric field in the circular aperture of a

complementary (inducting) screen when R c = 0

(1.2.8)

V V H H
= EE { (CVmn+ Dmn) Umn + (CHmn + Dmn) Umn

mn

+ (evo -v vDmn) + (_H n -H H- Vmn - Dmn ) Vmn } (1.2.9)

The representation in (1.2.8) is based on the Babinet principle that

ZOEin d (z = 0) --> l-lca p (z = 0+) or l'Ica p (z = 0-)

and the fact that

.is (z = O) = _,x [Hcap (0+) - Hcap (0-)]

Because of (1.2.7), the same representation (1.2.8) for the conducting case can still be used for

the present resistive case.

The summation in (1.2.9) represents the superposition of fields on four rings. Let us

concentrate on the field on a typical ring. As explained in Appendix A, the assumption of

narrow ring width allows us to use a simplified modal field representation, namely,

1 r Am 6°1" [ sin m, ]
UVnaH= I_ 9- L_J L--cos m0J

VVmH = 0
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In anothercode"ring2c," weusedtheexactcoaxialwaveguidemodesto representthefield on

therings. For narrowrings,thereis virtually nodifferencein their solutions.

Ourproblemat handis to determineNF transmissioncoefficients{ Tpq,Tpq } and NG

reflection coefficients { Rpq, Rpq }, for a given set of incidence coefficients {Ipq, ]pq }. In the

present formulation, we determine aperture-field coefficients { Cmn + Dmn, Cmn - Z)mn } as an

intermediate step.

1.3. Field Matching at z -- 0

There are three boundary conditions to be satisfied. The first one is

where

Eta n (z = 0-) = E (z = 0+), in E1 + E2

_1 = resistive circular plate

_2 = remaining portion in a unit cell.

(1.3.1)

We multiple both sides of (1.3.1) by the operator

We obtain

exp j(UpoX + Vpqy)

+ P_ +P_

which relate the transmission coefficients to the reflection coefficients.

The second boundary condition is

(1.3.2)

(1.3.3)

(1.3.4)
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Js(O) , in E1
Js(oUtside) l 0 , in E2

(1.3.5)

Here Js(0) is the induced current on the resistive circular plate and is given in (1.2.7). The

current Js(oUtside) is that calculated from the discontinuity of the tangential H-field outside the

resistive plate, namely,

Js(ouiside) = _ x [I'It(O+) - l'It(O-)], in E 1 + E2 (1.3.6)

We will now consider the enforcement of (1.3.5) in detail. Substituting (1.2.2) and (1.2.6) into

(1.3.6) gives

Js(outside) = jWpq Qpq (x, y) { _q F_ [(p(l) + p(3))Ipq + (ppq +

where

+ IXpq_ rpqr_(4)Ipq + _t-pq_(3)_pq[(_) _ _}3_) _'pq + (-_(2q)_ _:_) _pq] + _pq _ ]'pq }

(1.3.7)

,...(1),,_(5) p_ (_6pq) _p(__ p(4pq)(-l_l)'pq |ppq- 1 (1.3.8)

1
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F

F_ 2koB 6_ _ _ {,ppq + (1.3.9)

- 2 Wpq

r 16)\=(5) + _(6)
- 1P_+P_ 1 [ E1Ypci|PPq

F(_3) = 2 ___ -2!_e6/p q.D)]x(5) :_p6q)7v pq

I-'pq
(1.3.10)

I f.-(1)
-_,,__,,,__>_>+_ ]+ppq.-(ppq _(p2q)- _(p4q)

(1.3.11)

1 1 (1)
Xpq-2Wpq

In deriving (1.3.7), we have made use of (1.3.3) and (1.3.4). We multiply both sides of (1.3.5) by

.2,2 EA1t_pq *

_ _2 dx bI2 dY [exp j(Up°X + VpqY)] [Wpq]_pq_ •

(1.3.12)

We obtain

,.(4))Rpq] F(3pq) + Ipqldl_ }2 {[ (p_q) + p_)Ipq + (p(p_2)+ "Pq"jab Wpq

V _ y(3)H H H[-X (3>V (CVmn + Dmn) (Cmn + Dmn)= _ ,. pqmn "Lpqmn
mn

-X(4)v -v -v _Y(4)H -H -Hpqmn (Cmn - Dmn) --pqmn (Cmn - Dmn) ] (1.3.13)



168

2 {r--(1) "_(3)'_j ab Wpq - i_pq) rpq Ipqrpq

where

V y(1)H H H[y (l)V (CVmn + Dmn) + (Cmn + Dmn) ]= 3"_ t" "pqmn "'pqmn

rlvl r ]Xpqmn cos m Opq

= -j Wpq a_)mn

IX (1)HI Lsin m t_pqpqmn_

(1.3.14)

v] rsinmO ]Xpqmn _(3)
= -j Wpq Upqmn

[_K (3)H /
•----pqmn-a L--cos m _pqA

r (4)v ] _ sin ]
Xpqmn (Fmn _(4)r mt_pq

= -j Wpq |. r-'pqmn /

[y (4)H ] kkOEc) LcosmCpd
_" "pqmn--,

(_(1) }

pqmn

given in Appendix B
_(3)
Upqmn

O_)mn = 0

In deriving (1.3.13) and (1.3.14), we have made use of the fact that

A
A

z x A Ogpq = -A • _pq (1.3.15a)

A A

z x A .[ipq = A ° Otpq (1.3.15b)

From (1.3.13) and (1.3.14) we can solve for {Rpq, Rpq} in terms of ICVmn, DVm..... }. The results are
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p(l) + ^(3)
pq Ppq F_q)

Rpq = - P(2) + p_ Ipq - F_ (p_ + p_q))
Ipq (1.3.16)

+ (-1/F_)

jab w2 (p(_2) + p_q))

V . v(4)V -V -V
X(3)v (cV +Dmn) - Dmn )- (¢m._Y_ t "_pqmn -1-Apqmn

mn

H X(4)H -H -H
+ X(3)Hpqmn(CHmn + nmn) + -=pqmn (Cmn- nmn) }

=(1) =(3) (4)
_ PPq --IJP____qq- _ Flxt

Ipq (1.3.17)

+
(-1_)

2 --(2)__)jab Wpq (p pq

H
V , v(l)V (CHmn + Dmn) }X (1)V (CVmn+ Dmn ) -r Apqmn--ZZ t"pqmnmn

So far we have expressed the transmission and reflection coefficients in terms of unknown

current coefficients

v v H H -V -V -H -HCmn, Dmn, Cmn , Dmn , Cmn , Dmn , Cmn , Dmn } (1.3.18)

Those expressions are independent of the resistivity R c.

The third and the last boundary condition to be enforced is

Et(z = 0-) = R c Js(O), in Z1 (1.3.19)

where E t is given in (1.2.1), and Js in (1.2.8). Multiply both sides of (1.3.19) by

d

i pdp
o V,H

0 _× VmnHJ

(1.3.20)



we obtain

170

IF x (3)V7 1
/-pqtw / (,_)1 [-xO}v7/pqtw/ _

xx L-x (3)H/Rt_qpq/wJ+ (k°e6) Lx_J Rpq

(1.3.21)

= (_j)(_I)I-1TIZo V CIV + DIV]

L ClHw + D/HJ

where

Fv4Vl) F,v]=(-J)(-1)'-I _Z0+(l"/w_2 C/w-D/w

-H
t..-| X (4)Hpqlw_l| LkoEc) Le,"wD,wJ

- (I) p(3pq))Ipq+ (p(p_2)p_) RpqRI;q = (ppq + +

(1.3.22)

- r-:(l> _ _(3pq)) - (-_(p_2)_ _(p4)) _pqR_q = A,p pq Ipq +

Substituting (1.3.16) and (1.3.17) into (1.3.21) and (1.3.22), we obtain the desired matrix

equation.

Here

_'C'=G' (1.3.23)

X p=

- .(1)V t(1)H t-(1)V t-(1)Ht/wmn

t(3)V t(3)H t--(3)V t-(3)H

t(5)v t(5)H t-(5)V t-(5)H

_ t(7) V t(7)H t--(7)V t==(7)H
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Ct _.

- V V-
Cmn + Dmn

H H
Cmn + Dmn

-V -V
Cmn - Dmn

-H -H
_Cmn - Dmn_

u

G_=

-g_7
I

_i

i
i

-g_J

The explicit expressions of _' and _J' are given below.

F I Isinm0pq "wmn/ '_ __A__
,(3,V,H, = _-_ ' / w'_/_(3) Y(3,V'H'"pqmn O(p_3)n

e4/rpq
c.t twmn -J L--cos m ¢ppq..]

+ rc°sm° 7ty(1)v,n a_m. [(,k0E6) k,Wpqj_(pq3 ) "" pqmn sin m ¢pqJ

+ 8_ 5n (_l)l_ 1 rlZo (1.3.24a)

I.-(1)V.H7

t /wmn _

,--(3)V,H/
t /wmn -J

= Same as It 1)1 except

t(3)_i

x(3) "") X(4) 1

XO ldia-g2nal termJ

(1.3.24b)

.(5)V,H7

t lwmn /

,(7)V,H/
t/wmn -J

= Same as rt 51exceptIx4t
Lt--(7)/ _no diagonal terrnJ

(1.3.24c)



172

17(5)V,H-]

'- /wmn J =a--bl _pq_

/7(7)V,H/
I_ t /wren ..I

{ rsinmo ]}wM_r,(3)__j___l__L_y(4)V,H (4)-- pqmn t_pqlw

_jrpq Lcos m Cpq

+ _T _nw(-1)/-1 rlZ0 (F/w/ko_c) ( 1.3.24d)

{[si:::::q]_(3) (1_i_/F(3pq)) IpqWpq Upq/w

[c°sm0pq1 }+ Wpq Upqlw Fpq) koe6) ]'pq

Lsin m Cpq]

glt]=zz
gl4w)J Pq

{Fsinm'qlWpqu ,w }rpq.
LCOS m ¢lxtd

In summary, the final matrix equation is in (1.3.23) for the unknown coefficients {C'}. Once

{C'} are solved, the reflection coefficients are calculated from (1.3.16) and (1.3.17), and the

transmission coefficients from (1.3.3) and (1.3.4).
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To determine the modal field on a metal ring, we may consider its complementary problem,

the modal field on a coaxial waveguide, because these two fields are related by the Babinet

principle. Consider a coaxial waveguide shown in Figure A. 1. Its normal modes can be found in

a standard textbook (e.g., N. Marcuvitz, Waveguide Handbook, New York: McGraw-Hill, 1949,

pp. 72-80). They are given in terms of Bessel functions and are rather complicated. Under the

condition of narrow gap that
d-c
--<< 1 (A.1)

C

we can use a set of simple and approximated modes to be deduced below.

Consider the field in the neighborhood of Q in the coaxial waveguide. Under the condition

(A. 1), it can be well approximated by that in a slot waveguide on the right-hand side of Figure

A. 1. The fields in the latter are expressible in terms of two vector potentials, namely,

I '1
COS _ X

n/_
TE modes: _ = Amn cos -- y' + e+jFmnz (A.2a)

2m_ ,/
L sin _ x j

I '1
COS _ X

TM modes: _ = Amn sin n 71: "
2 m rc ,/ _ y' + e+JrmnZ (A.2b)

L sin _ x j

where

rmn = _k_- (_)2 - (-_) 2
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Theboundaryconditionfor theslotwaveguideis that

(Field atAB) = (Fieldat A'B') (A.3)

Figure A. 1. The field in a coaxial waveguide with a narrow gap can be approximated

by that in a slot waveguide.
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which leadsto theadmissionof bothcosineandsinefunctionsin (A.2).

replacement

x' ---*d ¢

y'--->p- 0.5(d + c)

Makinguseof the

(A.4a)

(A.4b)

weobtaintheapproximatedmodesin anarrowcoaxialwaveguide,namely,

Lsinm -_-
(A.5a)

 m F °sm01Isin ,°c,l
L sin m ¢

Because of the fact that d _ 0, we make a further approximation by using only

(A.5b)

n=0 (A.6)

modes in (A.5), we obtain

TE modes:
_ llCOS m 0] [Cm e_jFmz + Dme+jFmz ]V--" mksinm ¢m=0

(A.7a)

TM modes: (A.7b)

where

(A.7c)

The non-zero field components can be calculated with the formulas
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(A.8a)

1 1 O2lg

He = j ko Zo P _ _Z
(A.8b)

Returning to Figure A. 1 let us write down a field representation at z = 0 for the coaxial

waveguide:

Et(0) =Z { (CVm + DVm) UVm + (C&Im+ DHm) UHm} (A.9a)

where

I'it(0) Z0 { (CVm -- DVm) (_ × UV) + (cHin -- DH) (_ × Uv) }

uV,H=_ 1[ AmZ0 11/2[ sinm¢ 1,m=1,2,3....

m pL2X in (cd)j L_.cos m ¢j, m = 0, 1, 2, ...

(A.9b)

(A.10)

where Z 0 = 120/t and Am = 1 if m = 0 and Am = 2 if m, 0. The m = 0 mode is the well-known

I1V'H has been normalized such thatTEM mode in a coaxial waveguide. Note that v m

IIs IIV'H IIV'H {Z0'ifm=nlot vm " _n pdpd¢ = 0, if m, n
(A.ll)

is satisfied.
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Appendix B: Coupling Coefficients

To change (1.3.5) into a matrix equation, we apply the operation (1.3.12) to both sides of the

equation. The resultant equation is given in (1.3.13) and (1.3.14). In this appendix, we give the

details of deriving the coefficients {Xpqmn }.

Applying (1.3.12) to the right-hand side of (1.3.5), the integral is reduced to 4 integrals over

the 4 metal rings, namely,

_over a ring_over cell axb = 4 rings

In the following, let us concentrate on a typical ring with outer and inner radii (d,c):

X _)V'H1 f _siot pdpd_ eJ(Up°X + VpqY)Wpq _m
/X.(3)V,H/=
L--pqm J LflpqJ

(B.1)

. V,H
where u m axe given (A. 10), and

A

_pq = W_ (_ Vpq - 9 Upo) = "-_ X [3pq (B.2a)

= -1 ^ ^_pq Wpq (_ Upo + Y Vpq) = _ × Ctpq (B.2b)

The final results after evaluating (B. 1) are

(1)v

[Xpqm] = -j Wpq Opqm(l)/[c°s m t_pq]

(1)H LsinLXNmJ m @lxlJ

(B.3)
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where

x_Vl_ O_)m [ sin m 0pq ]
x (3)H - -j Wpq
--pqm J L'-c°s m ¢r_J

(B.4)

pqm 12x In (cd) (-2m x)jm Wpq

wpqd

f dt
WpqC

(B.5)

°a'm-I7 1_2_ In (cd) (2_) jm Wpq [Jm (wpqd) - Jm (WpqC)]
(B.6)

The derivation of (B.5) is given below. From (B. 1) we have

1 co ,00,Fsinm01
(I'H = C_dp _d¢ ej w_p .(-1) Wpq sin(0- ¢lXl)

Lxmmj /_osmOJ

where

C Am 7_,0 )1/2C= 2rt-(lnd-lnc)

(B.7)

Using the identity in (B.7)

we obtain

sin m O = cos m Opq" sin m(O - Or,q) + sin m Opq "cos m(O - Opq)

cos m O = cos m Opq "cos m(O - Opq) - sin m Ol:,q" sin m(O - Opq)

Xlxlm [COS m Opq [cos(m-l) O' - cos(m+l) O'] eJ Wpqp cos¢'=C dp dO'

(1)H L sin m 0pqJLx_mJ _
(B.8)



179

where

¢'= ¢-¢pq

The integral with respect to ¢' can be written in terms of Bessel functions, namely,

d

[Xpqm] = -CWpq(I)H(1)V icos m Cpq/Tz(j)m_ 1 .J dp [Jm-I (Wpq P) + Jm+l (Wpq p)]
LxpqmJ _,sin m _pq)

wpqd

(COS m CPq/. fJ-_dt
= -C (2 m/t)j (m-l) k,sin m Cpq) WpqC

which is identical to (B.3) and (B.5).
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Appendix C: Field Expression in (1.2.1)

The field just below the R-sheet is the field at z = 0- in region 6 (Figure 1.1). The modal

coefficient in region 6 is { A(_6), B(p6q)}. By matching the fields at the dielectric interfaces between

layers 6 to 26, we obtain

A(p6q)= p_ Ipq + P_ Rpq

B (p6q) ^(3) (4) Rpq= ppq Ipq + ppq

_(6q) -- =(l)ppq_'pq + _ _,pq

_(6) = _(3)_'pq + _(4pq)_pq (C.l)

To define the coefficients { _(1) _(1) } let us introduce the 2 x 2 matrices, for n = 1, 2, 26,l-'pq, t_pq, , "'"

I e_jr,) z
F_ (z) =

,_l_e-J_'_t)z

• (n). 1

e+j_pq L

• (n).
-y(pn_e +JYpq"

(C.2a)

e_j_)z . (n). 1

e+jYpqo

_:_ (z)= l_e-j_,_)z _ _n 7(pnq)e+j'_z
En

(C.2b)

Then the coefficients in (C.2) are given by

[ ]25=rI
p_ p_ n=6

[_p_ (/n)] -1 F_ +l) (/n) (c.3)

The same equation holds for { p_, p_ .... } except that F_ is replaced by F_.
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Thefield in upperregion 1canbeexpressedin termsof thatin upperregion5, namely,

where

A(I) p(5)Tpq exp[+j'/(_ Zc] (C.4a)pq =

Bpq(1)= p(l_6)Tpq exp[-jy(plq ) ,t;c] (C.4b)

Apq-(l)= z(5)ppq -Tpq exp[+J'_l_ Xc] (C.4c)

Bpq-(1)=_(6) _,pq exp[_j./(l_lq) ,l:c] (C.4d)

xc - metal thickness = zero in the present capacitive FSS

p_ = p_q) exp[-j_lq ) Xc]

p(6) p(p9) +_fl)= exp[ jqrpq "_c]

[ p(7) p_ ]: H[I_P_ (/n)] -1 F_q+1) (/n)
p(9q) Ia'(lO)pq n

(C.5a)

(C.5b)

(C.5c)

The same equation (C.5) holds for { _(pSq),_(p6q).... } except that F_q ) is replaced by F_. Note

that { p(Sq), p(10)pq,_, _(_)} do not enter into the field calculation. The reason that the

exponential factors are introduced into (C.5), is to facilitate the field matching at z = xc later.

The matrices in (C.3) and (C.5c) can be written in a more explicit form, namely,

where

[F(p_ (/n)]-I F_+I ' (/n) : ½ [

(1 + a_) e-JC_ )

(1- a_) e-Jb_ )

(1 - a_) e+Jb_) 1
(1 + a_) e+JC_ )

(C.6a)

a_ = 7(p_+l)/_pnq) (C.6b)

b_ = t_pqr_n+l)+ _] l n (C.6c)
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c(pnq)= ['y(l:_l+1) - 'y(;q)]/n (C.6d)

n-- 1, 2, 3, 4, and 6, 7, 8, 9. (C.6e)

To calculate [F_ (/n)] -1 _(n+l) a_-pq (/n), only the factor in (C.6a) is replaced by

a-(p) = a_ (IZn/En+l) (C.7)




